
1

Le Temps des Cerises: Efficient Temporal Stack Safety on
Capability Machines using Directed Capabilities

AÏNA LINN GEORGES, Aarhus University, Denmark

ALIX TRIEU
∗
, ANSSI, France

LARS BIRKEDAL, Aarhus University, Denmark

Capability machines are a type of CPUs that support fine-grained privilege separation using capabilities,

machine words that include forms of authority. Formal models of capability machines and associated calling

conventions have so far focused on establishing two forms of stack safety properties, namely local state

encapsulation and well-bracketed control flow. We introduce a novel kind of directed capabilities and show

how to use them to make an earlier suggested calling convention more efficient. In contrast to earlier work

on capability machine models we do not only consider integrity properties but also confidentiality properties;

we provide a unary logical relation to reason about the former and a binary logical relation to reason about

the latter, each expressive enough to reason about temporal stack safety. While the logical relations are useful

for reasoning about concrete examples, they do not on their own demonstrate that stack safety holds for a

large class of programs. Therefore, we also show full abstraction of a compiler from an overlay semantics

that internalizes the calling convention as a single call step and explicitly keeps track of the call stack and

frame lifetimes to a base capability machine. All results have been mechanized in Coq.

1 INTRODUCTION
Lack of memory safety is an important source of security bugs, for instance, 70% of all issues in Mi-

crosoft products [Thomas 2019] and in the Google Chrome browser [Chromium 2020] are memory

safety related. It is thus not surprising that a large number of software or hardware protection mech-

anisms such as shadow stacks, stack canaries, address space layout randomization, etc (see [Szekeres

et al. 2013] for a survey) have been proposed. Capability machines have recently risen as a promising

solution to memory safety vulnerabilities; quoting a Microsoft study, “[capability machines] would

have deterministically mitigated at least two thirds of all those issues” [Joly et al. 2020].

Capability machines are a kind of architecture that enable fine-grained memory protection using

tagged memory [Carter et al. 1994; Dennis and Van Horn 1966; Levy 1984] and capabilities, a form

of unforgeable memory pointers with a certain amount of authority, in the form of a permission,

range, etc. Over the last decade, CHERI [Watson et al. 2020], a family of capability machines,

has matured into an extensive design featuring, among other, a full UNIX-style operating system,

CheriBSD [Watson et al. 2015]. Ideas from CHERI are currently being adopted by ARM in their

Morello project [Arm 2021], which is aimed at developing concrete CPU designs and prototypes

that could be implemented in future hardware.

One of the promises of capability machines is that they can enforce security properties that we

expect from high-level languages, in particular stack safety, even when machine code is linked with

other untrusted and possibly adversarial machine code. This potential is not yet realized in practice.

In particular, while CheriBSD does make use of so-called local capabilities to limit the impact of

potential bugs, it does not rely on them for enforcing security properties. This is likely because a

secure calling convention based on local capabilities could be too inefficient as it would require a

∗
This work was carried out while the author was affiliated with Aarhus University.

Authors’ addresses: Aïna Linn Georges, Aarhus University, Denmark, ageorges@cs.au.dk; Alix Trieu, ANSSI, France,

alix.trieu@ssi.gouv.fr; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

HTTPS://ORCID.ORG/0000-0002-5951-4642
HTTPS://ORCID.ORG/0000-0002-8239-8125
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://orcid.org/0000-0002-5951-4642
https://orcid.org/0000-0002-8239-8125
https://orcid.org/0000-0003-1320-0098
https://doi.org/

1:2 A.L. Georges, A. Trieu, and L. Birkedal

lot of stack clearing. Indeed, this is the case for the first known provably secure calling convention

based on local capabilities [Skorstengaard et al. 2019a] — this calling convention requires to clear

the full stack before and after every call. This has led to research on other calling conventions

based on novel forms of capabilities. In particular, Skorstengaard et al. [2019b] proposed a calling

convention based on so-called linear capabilities, which, however, are believed not to be efficiently

implementable in hardware. This motivated another proposal by Georges et al. [2021] who suggested

a secure calling convention based on a combination of so-called uninitialized capabilities and local

capabilities, and which only involves a modicum of stack clearing per call, on the order of a single

stack frame.

The works cited above on provably secure capability-machine-based calling conventions have

all focused on spatial memory safety, in particular local state encapsulation and well-bracketed

control flow. In another direction, Tsampas et al. [2019] recently proposed a kind of capabilities

including “lifetime” information to enforce temporal memory safety, e.g., that the content of popped

stack frames cannot be accessed. However, one problem with implementing this proposal is that in

order to allow for a call depth of size 2
𝑛
, 𝑛 bits would be required in the encoding of the lifetime

information for a capability, which renders it impractical.

In this paper, we propose a novel kind of so-called directed capabilities and show how they can

be used in combination with uninitialized capabilities to realize a new calling convention, which is

efficient (it does not involve any stack clearing at all) and which provably enforces both spatial and

temporal stack safety properties.

More precisely, we present CeriseM, an extension of the low-level capability machine model

of Georges et al. [2021], with a novel form of directed capabilities, for which we present a novel

stack-based calling convention. We show that it provably guarantees spatial and temporal stack

safety. In light of the fact that it is actually quite subtle to capture stack safety properties formally, as

also emphasized in a recent paper by Anderson et al. [2021], we include a detailed discussion of the

stack safety properties we consider and how our novel approach improves over earlier proposals,

see § 2. We include a discussion of the impact of stack objects on stack safety properties; prior work

on local capability machines have largely ignored stack objects, but they have a significant impact

on the guarantees provided by the capability machine. In contrast to the earlier formal models for

capability machines mentioned above, we do not only consider integrity properties but also (stack)

confidentiality properties.

To formally establish integrity, we follow the approach of Skorstengaard et al. [2019a] and develop

a unary Kripke logical relations model, which captures capability machine safety. Our model is an

extension of the one by Georges et al. [2021]; the novelty consists of an extension to account for

temporal safety. There are two facets to this: a simple one, which is to extend the definition to also

treat directed capabilities, and a challenging one, which is to extend the model, in particular, the

Kripke worlds, to capture the enforcement of temporal properties. The latter means that our model

makes use of a novel kind of state transition system for the Kripke worlds.

To formally establish confidentiality, we further develop a binary logical relations model. We

show that the binary logical relation implies contextual refinement so that it can serve as a sound

proof method for establishing contextual equivalence and hence confidentiality. To the best of our

knowledge, this is the first binary logical relations model for a low-level capability machine model.

We demonstrate that the unary and binary logical relations models can be used to prove stack

safety properties for challenging example programs; we focus on examples that have not been

considered in the literature before.

To give further evidence for the claim that our novel directed-capability-based calling convention

actually does capture stack safety, we follow the approach of Skorstengaard et al. [2019b] and show

full abstraction of a compiler from an overlay semantics that internalizes the calling convention as a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:3

single call step and explicitly keeps track of the call stack and frame lifetimes to the base capability

machine. The idea is that the overlay semantics clearly enforces stack safety; our overlay semantics

is related to the one used in [Skorstengaard et al. 2019b] but now accounts for temporal properties

by completely removing popped stack frames from the stack once their lifetime is over (technical

differences are detailed in § 6).

We have mechanized all of the models and results presented in the paper on top of the mechaniza-

tion of the Iris program logic [Jung et al. 2016, 2018, 2015; Krebbers et al. 2017a] in Coq [Krebbers et al.

2018, 2017b]. The Iris-Coq mechanization can be found online at https://github.com/logsem/cerise-

stack-monotone.

2 ON THE STACK SAFETY OF CAPABILITY MACHINES
In this section, we explore the properties that make up stack safety in the context of capability

machines. We follow Anderson et al. [2021], who define multiple degrees of stack safety, as various

conjunctions of local state encapsulation (LSE) and well-bracketed control flow (WBCF). In particu-

lar, our goal is to reach a notion of stack safety that falls within their definition of observational

stack safety, which also covers the temporal aspect of LSE. A key takeaway of this section is to

highlight how existing calling convetions incur undesired overhead in order to enforce stack safety.

Unlike Anderson et al. [2021], we consider LSE, WBCF and temporal stack safety for machines

with both a stack and a heap. For clarity, we illustrate each property with an example written in a

C-like language, though we actually consider the underlying assembly code. Next, we explore two

interesting aspects of these properties that are particularly tricky. Finally, we survey previously

proposed capability machine calling conventions and show where they fall on the spectrum of stack

safety, including the novel calling convention and efficient enforcement mechanism we present in

this paper.

2.1 A Family of Stack Safety Properties

1 void adv(void);
2 void f(void) {
3 int *y; // allocated on
4 *y = 2; // the stack
5 adv();
6 assert (*y == 2); }

Listing 1. Integrity: frame

1 void adv(void);
2 void f(void) {
3 static int x = 2;
4 adv();
5 assert (x == 2); }

Listing 2. Integrity: environment

1 void adv(void);
2 void f(void) {
3 int *y; *y = 2;
4 adv();
5 return; }
6 void g(void) {
7 int *y; *y = 3;
8 adv();
9 return; }

Listing 3. Confidentiality: frame

2.1.1 Local State Encapsulation. Local state is a concept that exists
in both low and high level languages. In a low-level language with a

stack, local state often refers to the encapsulation of local variables

in a stack frame. For instance, in Lis. 1, the local variable y is a

part of f’s local stack frame, and is not shared with the arbitrary

adversarial code adv; and hence the assert, stating the integrity of

y, should succeed.

In high-level languages, local state may also refer to the state

encapsulated within the scope of a closure. Consider Lis. 2, where

function f possesses some private state x (a static variable persists
across calls, similarly to local variables in closures). Upon return,

the integrity of x is tested with an assert statement. If x is not

properly encapsulated, adv may modify x, and the assertion fails.

The stack is used to store local variables as well as the local

environment to be reclaimed upon return of a call. When discussing

LSE, we will refer to the local state being the local stack frame not

shared with a callee, as well as the state encapsulated within a

closure, which ought to stay encapsulated not just from the callee,

but from the caller as well. For instance, an adversarial context may

call f in Lis. 2 multiple times, but it should never get access to the

private state x.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/logsem/cerise-stack-monotone
https://github.com/logsem/cerise-stack-monotone

1:4 A.L. Georges, A. Trieu, and L. Birkedal

Following Anderson et al. [2021], we must distinguish between local state integrity and local

state confidentiality. Local state integrity states that the local stack frame is protected from changes

by the callee, local state confidentiality states that the local stack frame cannot be read by the

callee and thus influence their behaviour. Hence local state confidentiality is a binary property.

1 void adv(void);
2 void f(void) {
3 static int x = 2;
4 adv(); }
5 void g(void) {
6 static int x = 3;
7 adv(); }

Listing 4. Confidentiality: envi-

ronment

For example, Lis. 3 contains two programs f and g with different

local states that should stay hidden from the arbitrary function adv.
Local state confidentiality guarantees the contextual equivalence

of the functions f and g. Similarly, Lis. 4 depends on the same local

state confidentiality, but for the environment of closures.

Since we also use the stack for the encapsulated environment of

closures, our notion of LSE includes the integrity and confidentiality

of the environment of a closure against the full context. Indeed, a

closure needs to protect its private state against both callees and callers.

1 void adv(void);
2 void f(void) {
3 static int x = 0;
4 x = 0; adv();
5 x = 1; adv();
6 assert (x == 1); }

Listing 5. Awkward Example

2.1.2 Well-bracketed Control flow. Another common property in

high-level languages is well-bracketed control flow. For example,

consider Lis. 5, which is a variant of the classical “awkward ex-

ample” [Dreyer et al. 2010a]. Here f possesses some local state x
(line 3), which is set to 0 before calling some arbitrary adversarial

code adv(). After the call returns, x is set to 1 before calling the

adversary again. Finally, x is checked to be still equal to 1 at the end. If WBCF is not enforced,

then during the second call to adv on line 5, adv could store the return pointer to line 6 in its own

private state, and call f, which would then set x to 0 before calling adv again who can finally use

the return pointer to line 6 it kept and fail the assertion.

It has been shown that both some form of LSE andWBCF can be enforced on capability machines,

even in the presence of arbitrary code [Georges et al. 2021; Skorstengaard et al. 2018, 2019b]. We

will give more details on how this is enforced in § 3.2.

1 int N, K;
2 void h(int* x) { *x = 0; }
3 void g(int* x) {
4 char* t[K];
5 h(x); }
6 void f(int** x) {
7 char* t[N];
8 int z;
9 *x = &z; }
10 int main(void) {
11 int* x;
12 f(&x);
13 g(x);
14 return 0; }

Listing 6. Example violating tem-

poral stack safety

2.1.3 Temporal Stack Safety. In another direction, Tsampas et al.

[2019] study the issue of temporal safety. Consider the code in

Lis. 6
1
, where &x on line 12 is a pointer to a location containing

another pointer. After the call to f, there is now a pointer at &x
to the location l previously occupied by z on line 8. The value

of l depends on a global variable N. It should be noted that l is

stale after the return and should not be allowed to be passed down.

Nevertheless, l is passed to h through g. For well chosen values of

K and N, it is possible that l coincides with where the return pointer

of h is stored and thus the store at line 2 can lead to the control

flow being hijacked. This example shows a temporal stack safety

violation that exploits a dangling stack pointer. To address this

issue, Tsampas et al. propose that capabilities are extended with “lifetime” information, basically

the call depth of the function’s stack frame, and that capabilities with longer lifetime may not

be used to store a capability with shorter lifetime. This would disallow the store on line 9 in the

example. In essence, it disallows dangling stack pointers to be stored on the stack, and thus to be

passed down the call stack beyond their lifetime.

Also related to temporal stack safety, Anderson et al. [2021] find that the lazy tagging and clearing

micro-policy of Roessler and DeHon [2018] violates the temporal aspect of observable stack safety,

and repairs it by generating fresh identifiers for each call, requiring an unbounded number of tags.

1
An example adapted from [Tsampas et al. 2019].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:5

2.2 Two Subtleties of Stack Safety

1 void f(void) {
2 static int x = 2;
3 int *y;
4 *y = &x;
5 assert (x == 2); }

Listing (7) Dangling stack

1 void f(void) {
2 int *x; *x = 2; }
3 void g(void) {
4 int *x; *x = 3; }

Listing (8) Temporal confiden-

tiality

1 int g(char* z, char* in)
2 int f(char* in) {
3 int *y = 2;
4 char* z = ...;
5 g(z, in);
6 assert (y == 2); }

Listing (9) Integrity with stack objects

We now highlight two subtleties of stack safety which previous works have mostly glossed over

in the context of capability machines.

2.2.1 Elaborating on Temporal Stack Safety. Stack frame lifetime intuitively dictates that the content

of a popped frame should not be read once popped. Tsampas et al. define temporal stack safety

as the absence of dangling stack pointers passed down the call stack (cf. Lis. 6). Here we wish to

emphasize that the absence of dangling stack pointers should also mean that no caller should be

able to (re)gain access to a dangling stack pointer when they resume. Concretely, consider Lis. 7,

where f possesses some local state x, initialised to 2, which is copied to the local variable y, after
which its integrity is tested with an assert statement. This assert statement appears entirely trivial.

However, recall that x is statically allocated and that fmay be called multiple times. Each invocation

of f may therefore leave a copy of x’s address on the stack. Subsequently, if a caller can read f’s
old stack frame then it may break the integrity of x in-between calls. This dangling stack attack is

an additional threat in low level languages where callers may create activation records containing

dangling stack pointers.

We will distinguish the absence of dangling stack pointers property from a slightly different

notion of temporal stack safety, which we call temporal confidentiality, and which can be thought

of as the temporal aspect of local state confidentiality. Consider two programs f and g whose only

difference is to leave different traces on their respective stack frames, e.g., as in Lis. 8. Then, as

long as temporal confidentiality is enforced, no caller should be able to distinguish f from g. We

remark that the complete absence of any dangling stack pointer (passed down or otherwise) implies

temporal confidentiality, without having to clear any parts of the stack.

2.2.2 Stack Safety in the Presence of Stack Objects. We now explain how stack objects may influence

stack safety properties. In prior work on local capability machines, stack objects have largely been

ignored. However, they have a significant impact on the guarantees provided by the capability

machine. Disallowing stack objects altogether is too restrictive as it is a common programming

idiom in C-like languages to pass stack references as arguments.

Let us consider what happens to local state integrity in the presence of stack objects. Consider

for instance the example in Lis. 9 in which f receives an input from a caller and passes it along with

its own stack object to its callee. In this scenario, neither f’s caller, nor g are trusted. In fact, they

may collaborate to break y’s integrity. Indeed, if no precaution is taken by f, it may be possible that

the stack object passed by its caller actually possesses write authority on f’s stackframe, which

could be abused by g.

2.3 Enforcing Stack Safety in Capability Machines
Let us recap the stack safety properties we have isolated thus far. (1) Local state integrity (LSE

integrity) guarantees that a callee cannot break the integrity of local stack frames (Listings 1 and 9),

and that neither the callee nor a caller can break the integrity of the private environment associated

with a closure (Lis. 2). (2) Local state confidentiality (LSE confidentiality) guarantees that the local

stack frame cannot influence the behaviour of a callee (Lis. 3), and that the private environment of

a closure cannot influence the behaviour of a callee or a caller (Lis. 4). (3)Well-bracketed control

flow (WBCF) guarantees that a callee returns to its immediate caller in the call stack (Lis. 5). (4)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 A.L. Georges, A. Trieu, and L. Birkedal

local + clear local + u linear temporal directed + u

w\o w w\o w w\o w w\o w w\o w

LSE integrity ✓ ✗ ✓ ✗ ✓2 ✓2 N\A N\A ✓ ✗

LSE confidentiality ✓ ✗ ✓ ✗ ✓2 ✓2 N\A N\A ✓ ✗

WBCF ✓ ✗ ✓ ✗ ✓ ✓ N\A N\A ✓ ✗

Temp. confidentiality ✓ ✓ ✓ ✓ ✗ ✗ N\A N\A ✓ ✓

Dangling stack ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Guarantees granted by the calling convention.

Temporal stack safety according to Tsampas et al. guarantees that a callee cannot return a dangling

stack pointer (a property that is violated in Lis. 6). We expand on that notion and additionally

guarantee that no caller can restore a dangling stack pointer upon return either (Lis. 7). Finally (5)

temporal confidentiality guarantees that a caller is unable to read popped stack frames, or, in other

words, that popped stack frames cannot influence the behaviour of the caller (Lis. 8). Temporal

confidentiality can also be interpreted as the temporal aspect of local state confidentiality.

Each of these properties can be investigated with or without the presence of stack-object param-

eters. It is in general easier to guarantee these properties by altogether disallowing stack objects.

Passing a stack object from a caller to a callee is not safe, unless certain conditions are dynamically

checked in between, in case an overlapping stack pointer (potentially breaking integrity) can be

reached from that stack object.

Together, these properties make up Anderson et al.’s notion of observable stack safety. In order

for the calling convention of a capability machine to be fully stack safe, it must enforce each of these

properties. Unfortunately, the current state of the art enforce them at a varying degree of efficiency.

In particular, enforcing temporal stack safety appears always to come at a significant cost.

Table 1 relates previous work on capability machine stack safety and also the work presented in

this paper to these properties, each in a situation where stack objects are not passed from caller

to callee (w\o), and in a situation stack objects are allowed (w). A ✓ means that the property is

guaranteed by the associated calling convention. The different calling conventions have more or less

overhead, in terms of the amount of stack clearing required by the calling convention. A ✓ depicts a

high overhead, on the order of the full stack size, a ✓ depicts a relatively low overhead, on the order

of a single stack frame, and a ✓ depicts a low overhead of constant time. A ✗ means some additional

check is needed to guarantee the property (it does not mean it is impossible to guarantee a given

property, but rather that it requires some additional mechanism beyond the calling convention).

Finally, N\A means that the property is assumed to hold given the granularity of the capability

machine language. (The marks come from our understanding of the earlier work, supported by the

various examples verified in each model.) The first column outlines the calling convention using

local capabilities and full stack clearing [Skorstengaard et al. 2018]. The second column outlines

the calling convention using uninitialized capabilities and partial clearing [Georges et al. 2021].

The third column outlines the calling convention using linear capabilities [Skorstengaard et al.

2019b], and the fourth column outlines a more high level language using temporal capabilities

[Tsampas et al. 2019]. The rightmost column gives an overview of the novel calling convention

using the directed capabilities we introduce in this paper.

We remark that the linear column shows a calling convention that checks many of the boxes

and, in fact, we conjecture that a (linear + uninitialized)-based calling convention could check all

boxes. Thus the reader may wonder why we introduce a new kind of capability and a new calling

2
While we mark the StkTokens calling convention [Skorstengaard et al. 2019b] as enforcing LSE as the authors claim, it is

actually unclear whether it does protect more than just the local stackframe as done in the other works [Georges et al. 2021;

Skorstengaard et al. 2018]. Indeed, the calling convention does not seem to prevent one from leaving a capability to some

private state on the stack and returning without clearing the stackframe.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:7

𝑎 ∈ Addr ≜ [0,AddrMax]
𝑝 ∈ Perm ::= o | e | ro | rx | rw | rwx

| rwl | rwlx | urw | urwl | urwx | urwlx

𝑔 ∈ Locality ::= global | local | directed
𝑐 ∈ Cap ≜ {(𝑝,𝑔, 𝑏, 𝑒, 𝑎) | 𝑏, 𝑒, 𝑎 ∈ Addr}
𝑤 ∈ Word ≜ Z + Cap

𝑟 ∈ RegName ::= pc | r0 | r1 | . . .
reg ∈ Reg ≜ RegName → Word

𝑚 ∈ Mem ≜ Addr → Word

𝜑 ∈ ExecConf ≜ Reg ×Mem

𝛿 ∈ ExecMode ::=

Executable | Halted | Failed
𝜌 ∈ Z + RegName

𝑖 ::= jmp 𝑟 | jnz 𝑟 𝑟 | move 𝑟 𝜌 | load 𝑟 𝑟 | store 𝑟 𝜌 | add 𝑟 𝜌 𝜌 | sub 𝑟 𝜌 𝜌 |
lt 𝑟 𝜌 𝜌 | lea 𝑟 𝜌 | restrict 𝑟 𝜌 | subseg 𝑟 𝜌 𝜌 | isptr 𝑟 𝑟 | getp 𝑟 𝑟 | getl 𝑟 𝑟 |
getb 𝑟 𝑟 | gete 𝑟 𝑟 | geta 𝑟 𝑟 | fail | halt | loadU 𝑟 𝑟 𝜌 | storeU 𝑟 𝜌 𝜌 | promoteU 𝑟

Fig. 2. Machine words, machine state and instructions.

ExecStep

(Executable, 𝜑) →

Jdecode(𝑧)K(𝜑) if 𝜑.reg(pc) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) ∧ 𝑏 ≤ 𝑎 < 𝑒 ∧

𝑝 ∈ {rx, rwx, rwlx} ∧ 𝜑.mem(a) = 𝑧

(Failed, 𝜑) otherwise

Fig. 3. Operational semantics: reduction steps.

convention here. There are several reasons: first, linear capabilities can be cumbersome to use,

as only the top part of a stack frame can be passed as parameters. Second, exceptions cannot be

implemented efficiently. Third, and most importantly, linear capabilities are expensive to realize

in practice. Moving a linear capability requires an atomic move which is believed by hardware

developers to lead to an undesirable overhead in runtime [Skorstengaard 2019, §3.6.2]. Indeed, this

was also the reason why Georges et al. [2021] considered local and uninitialized capabilities instead.

In fact, in order to reach full stack safety à la [Anderson et al. 2021], there is a cost to each existing

calling convention. The excessive stack clearing of [Skorstengaard et al. 2018] was improved upon

in [Georges et al. 2021], however the latter only achieves temporal stack safety by clearing local

stack frames upon return. Tsampas et al. [2019] propose temporal capabilities as an enforcement

mechanism to prevent dangling stack pointers. However, they would require an expensive amount

of bits to represent.

In this paper, we propose directed capabilities as an efficient enforcement mechanism (both

wrt. space and time complexity) of full stack safety. § 3.3 presents the definition of directed

capabilities, and in § 4 to 6 we show how directed capabilities can be used to enforce stack safety.

Our calling convention does not use any stack clearing at all. Furthermore, directed capabilities

can be efficiently realized in practice, requiring only one additional bit in the representation of

capabilities, and with only one additional dynamic bounds check which is similar to existing ones

(and hence efficient).

We define a unary model to reason about integrity properties, and a binary model to reason about

confidentiality properties (including temporal confidentiality). We use these models to reason about

small but challenging examples; we focus on examples that depend on properties not previously

considered on a low level capability machine (integrity in the presence of stack objects, and temporal

confidentiality). Furthermore, we follow the methodology presented by Skorstengaard et al. [2019b]

and define an overlay semantics that clearly enforces each of the properties in Table 1. In § 6.2, we

show how our new calling convention is fully abstract with respect to this overlay semantics.
3

3
In light of this full abstraction result, the reader may wonder why we also develop the logical relations models. The

reason is that while the overlay semantics makes some properties obvious (e.g., popping stack frames upon return), it is

not easy to use the overlay semantics for reasoning about concrete examples. This is not so surprising: even for high-level

languages like ML, scientists have had to invent Kripke logical relations (and other kinds of) models to reason about local

state encapsulation, e.g., [Ahmed et al. 2009; Dreyer et al. 2010a; Sumii and Pierce 2007].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 A.L. Georges, A. Trieu, and L. Birkedal

3 CAPABILITY MACHINE: OPERATIONAL SEMANTICS AND CALLING
CONVENTION

In this section we present the operational semantics of the capability machine we consider. Our

capability machine is based on the one by Georges et al. [2021] and is, transitively, inspired by

CHERI [Watson et al. 2015] and the M-Machine [Carter et al. 1994].

In § 3.1, we first recall from Georges et al. [2021] how the operational semantics for a capability

machine with local and uninitialized capabilities is defined. Then, in § 3.2, we further recall how

said capabilities can be used to enforce LSE and WBCF via a secure calling convention. We then

add support for directed capabilities in § 3.3, and present our new improved calling convention,

which can finally efficiently guarantee temporal stack safety, in § 3.4. Figures 2 to 5 summarize the

operational semantics; components marked in blue are for the novel directed capabilities and will

be detailed in § 3.3.

Fig. 2 describes the syntax of our capability machine. We model a capability machine with finite

memory. The set of addresses Addr is defined as the interval [0,AddrMax], where AddrMax is the

top address and cannot be dereferenced. Memory contains machine words𝑤 that are represented by

either an (unbounded) integer or a capability. A capability is a quintuple (𝑝,𝑔, 𝑏, 𝑒, 𝑎) representing
the authority to exert the permission 𝑝 over the memory range [𝑏, 𝑒 [and currently pointing to 𝑎.

3.1 A Capability Machine with Local and Uninitialized Capabilities
A permission 𝑝 can either be opaque (o), enter (e), read-only (ro), read-execute (rx), read-write (rw),

read-write-execute (rwx), read-write-local (rwl), read-write-local-execute (rwlx), or uninitialized-

rw (urw), uninitialized-rwl (urwl), uninitialized-rwx (urwx), uninitialized-rwlx (urwlx). Per-

missions form a lattice as illustrated in Fig. 4. The permissions ro, rx, rw, rwx are standard.

Permission o provides no authority. Enter (e) capabilities represent opaque closures encapsulating

code and data. As such, they cannot be read, written to, executed nor modified. They can only

be jumped to, which will load them into the program counter register and unseal them into a

rx capability. Their usage will be further illustrated when describing the operational semantics

and the calling convention. Locality 𝑔 is either global or local, and forms a lattice as illustrated

in Fig. 4. local capabilities are meant to represent stack derived capabilities, while global ones

represent heap derived ones. They will be described further in § 3.2. Write-local permissions (rwl

and rwlx) are similar to their regular counterparts, but additionally provide the authority to write

local capabilities to memory. That is, a regular rw capability cannot be used to write a local

capability to memory, only global ones. Finally, uninitialized capabilities u𝜋 represent a form of

use-after-write authority: they provide permission 𝜋 over the range [𝑏, 𝑎[and write permission on

range [𝑎, 𝑒 [— the boundary is automatically increased when the capability is used to write at 𝑎.

rwlx global

rwl urwlx rwx

urwl rw urwx rx local

urw ro e

o directed

Fig. 4. Permission and locality hierarchy.

Machine instructions 𝑖 operate over reg-

isters or constants and their behaviour will

be detailed later. A register is either the

program counter pc or a general purpose

register r0, r1, A machine state is com-

posed of a mode describing whether the

machine is in an Executable state, or in a

terminal Failed orHalted state, and an exe-

cution configuration. An execution config-

uration is a pair of a register file, mapping

registers to their values, and a memory

state, mapping addresses to their values.

The operational semantics of the machine shown in Fig. 3 is given in smallstep style and has only

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:9

one rule: if the state is Executable and the program counter contains an in-bounds executable

capability pointing to some machine word, then an instruction is decoded and executed; otherwise

the machine fails. Recall that, in general, failing is considered safe since it crashes the machine

before anything unsafe occurs.

The semantics of instructions is given in Fig. 5. Most instructions increment the program counter

at the end of their execution, except for branching and terminating instructions. This process is

defined by updPC, which fails if the program counter does not contain an executable capability.

Terminating instructions fail and halt change the machine state respectively to a Failed and

Halted state. The move instruction copies a machine word in a register. The load instruction reads

from the memory into a register, provided that a capability with sufficient authority is given.

Similarly, the store instruction is used to write to memory. Additionally, if the word that is stored

is a local capability, it must be that the capability provided has write-local authority. The jmp
instruction copies a word to the program counter, additionally, if the word is an enter capability, it

is unsealed into a rx one. The instructions restrict and subseg are used to decrease the authority
of a capability. The former decreases the permission and the locality of a capability following the

lattice given in Fig. 4. The latter decreases the range of authority of a capability. The lea instruction
is used to change the current address a capability points to. As explained earlier, an enter capability

cannot be modified, and subseg and lea will thus fail. Furthermore, as the current address of an

uninitialized capability indicates the boundary between where its regular authority applies and

where it can only write, it is only safe to decrease the current address using lea. The instructions
getp, getl, getb, gete and geta can be used to retrieve respectively the permission, locality, base

address, end address and current address of a capability. loadU and storeU are similar to their

regular counterparts, but operate only with uninitialized capabilities. An additional offset parameter

is provided in order to be able to access the range that has already been written to. Moreover, if the

offset provided is 0, then the boundary of the capability is incremented by storeU. The promoteU
instruction can promote an uninitialized capability to its regular counterpart by discarding the

memory range that has not been written to yet.

3.2 A Secure Calling Convention using Local and Uninitialized Capabilities
We now give an intuitive account of how the calling conventions of Skorstengaard et al. [2018,

2019a] and Georges et al. [2021] enforce local state encapsulation and well-bracketed control flow.

The calling convention of Skorstengaard et al. [2018] uses local capabilities (not uninitialized

capabilities) and requires that a program is initially provided with a stack capability with authority

over the whole stack in a register 𝑟stk when executed. Assume the following scenario where Alice

calls Bob who calls Claire. We explain how Bob can protect himself from both Alice and Claire

using the calling convention of Skorstengaard et al. [2018].

Bob expects to receive a stack capability from Alice to build his own stack frame. Similarly,

when calling Claire, Bob needs to provide the stack capability to her. However, in order to enforce

local state encapsulation, it is necessary that Bob does not provide access to his own stackframe to

Claire. Thus, when calling Claire, Bob restricts the stack capability to the unused part, using the

subseg instruction, and then passes it to her. However, Bob needs to be able to restore access to

his own stack frame upon return. He can do that using an enter capability: Bob constructs a return

capability as an enter capability that restores the local environment when jumped to. This return

capability can be safely passed to the callee Claire as its contents cannot be read, but can only be

jumped to. This suffices to protect Bob’s private state from Claire, but it is not enough to enforce

WBCF. Indeed, on its own, this does not prevent the attack explained in § 2.1.2, in which a callee

keeps a copy of a previous return capability beyond its “lifetime”. To prevent this kind of attack,

Skorstengaard et al. use local capabilities: The stack capability is made write-local, executable

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 A.L. Georges, A. Trieu, and L. Birkedal

updPC(𝜑) =
{

(Executable, 𝜑 [reg.pc ↦→ (𝑝,𝑔, 𝑏, 𝑒, 𝑎 + 1)]) if 𝜑.reg(pc) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and rx ̸≼ 𝑝

(Failed, 𝜑) otherwise

getWord(𝜑, 𝜌) =
{

𝜌 if 𝜌 ∈ Z
𝜑.reg(𝜌) if 𝜌 ∈ RegName

canReadUpTo(𝑤) =

⊥Addr if𝑤 ∈ Z
min(𝑎, 𝑒) if𝑤 = (u𝜋, _, _, 𝑒, 𝑎)
𝑒 if𝑤 = (𝜋, _, _, 𝑒, _)

𝑖 J𝑖K(𝜑) Conditions

fail (Failed, 𝜑)
halt (Halted, 𝜑)

move 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤]) 𝑤 = getWord(𝜑, 𝜌)

load 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑤]) 𝜑.reg(𝑟2) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and𝑤 = 𝜑.mem(𝑎)
and 𝑏 ≤ 𝑎 < 𝑒 and 𝑝 ∈ {ro, rx, rw, rwx, rwl, rwlx}

store 𝑟 𝜌 updPC(𝜑 [mem.𝑎 ↦→ 𝑤])

𝜑.reg(𝑟) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and 𝑏 ≤ 𝑎 < 𝑒 and

𝑝 ∈ {rw, rwx, rwl, rwlx} and𝑤 = getWord(𝜑, 𝜌) and
if𝑤 = (_, local, _, _, _), then 𝑝 ∈ {rwlx, rwl} and
if𝑤 = (_, directed, _, _, _), then 𝑝 ∈ {rwlx, rwl} and
canReadUpTo(𝑤) ≤ 𝑎

jmp 𝑟
(Executable,
𝜑 [reg.pc ↦→ newPc])

if 𝜑.reg(𝑟) = (e, 𝑔, 𝑏, 𝑒, 𝑎), then newPc = (rx, 𝑔, 𝑏, 𝑒, 𝑎)
otherwise newPc = 𝜑.reg(𝑟)

restrict 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤])
𝜑.reg(𝑟) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and
(𝑝 ′, 𝑔′) = decodePermPair(getWord(𝜑, 𝜌)) and
(𝑝 ′, 𝑔′) ≼ (𝑝,𝑔) and𝑤 = (𝑝 ′, 𝑔′, 𝑏, 𝑒, 𝑎)

subseg 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑤])
𝜑.reg(𝑟) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and for 𝑖 ∈ {1, 2},
𝑧𝑖 = getWord(𝜑, 𝜌𝑖) and 𝑧𝑖 ∈ Z and
𝑏 ≤ 𝑧1 and 0 ≤ 𝑧2 ≤ 𝑒 and 𝑝 ≠ e and𝑤 = (𝑝,𝑔, 𝑧1, 𝑧2, 𝑎)

lea 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤]) 𝜑.reg(𝑟) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and 𝑧 = getWord(𝜑, 𝜌) and
𝑝 ≠ e and𝑤 = (𝑝,𝑔, 𝑏, 𝑒, 𝑎 + 𝑧) 𝑝 = u-, then 𝑧 ≤ 0

geta 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑎]) 𝜑.reg(𝑟2) = (_, _, _, _, 𝑎)

loadU 𝑟1 𝑟2 𝜌 updPC(𝜑 [reg.𝑟1 ↦→ 𝑤])
𝜑.reg(𝑟2) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and 𝑝 = u- and

off = getWord(𝜑, 𝜌) and 𝑏 ≤ 𝑎 + off < 𝑎 ≤ 𝑒 and

𝑤 = 𝜑.mem(𝑎 + off)

storeU 𝑟 𝜌1 𝜌2
updPC(𝜑 ′

[mem.(𝑎 + off) ↦→ 𝑤])

𝜑.reg(𝑟) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and 𝑝 = u- and

off = getWord(𝜑, 𝜌1) and𝑤 = getWord(𝜑, 𝜌2) and
if𝑤 = (_, ℓ, _, _, _) and ℓ ≠ global then

𝑝 ∈ {urwlx, urwl} and 𝑏 ≤ 𝑎 + off ≤ 𝑎 < 𝑒 and

if off ≠ 0 then 𝜑 ′ = 𝜑 else 𝜑 ′ = 𝜑 [reg.𝑟 ↦→ (𝑝,𝑔, 𝑏, 𝑒, 𝑎 + 1)]
and if ℓ = directed, then canReadUpTo(w) ≤ 𝑎 + off

promoteU 𝑟 updPC(𝜑 [reg.𝑟 ↦→ 𝑤]) 𝜑.reg(𝑟) = (𝑝,𝑔, 𝑏, 𝑒, 𝑎) and 𝑝 = u𝜋 and

𝑤 = (𝜋,𝑔, 𝑏,min(𝑎, 𝑒), 𝑎)
. . .

_ (Failed, 𝜑) otherwise

Fig. 5. Operational semantics: instruction semantics.

(rwlx) and local, and all other (heap) capabilities are non write-local. This guarantees that if the

return capability is built on the stack (and therefore local), then the only place Claire can keep a

copy of a return capability, is on the stack itself. Consequently, by clearing the stack before passing

it to Claire, Bob can be sure that she will not be able to recover a previously left copy of a return

capability. Finally, to protect himself from Alice, Bob also clears the whole stack and the registers

before returning, so that Alice cannot access anything. Skorstengaard et al. later point out that it is

sufficient for Bob to only clear his own stack frame, as anything that Claire may leave on the stack

either originally came from Alice, or is a return capability from Bob, and, as Bob clears his own

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:11

stack frame, using the return capability will only lead to cleared data. As briefly mentioned in § 2,

the original calling convention by Skorstengaard et al. [2018] enforces temporal confidentiality

with an excessive amount of clearing. With the optimization by Skorstengaard et al. [2019a], one

only clears one’s own stack frame on return. Although this improves the efficiency of the calling

convention, every secure closure must clear its own stack frame upon return.

Furthermore, even with the optimization mentioned by Skorstengaard et al. [2018], Bob still needs

to clear the whole stack before being able to call Claire safely, and hence the calling convention

is still very inefficient. To address this issue, Georges et al. [2021] proposed to make the stack

capability into an uninitialized capability. By passing an uninitialized urwlx stack capability to

Claire, we are guaranteed that Claire cannot read anything left on the stack, without overwriting it

beforehand, and thus there is no need to clear the whole stack before calling Claire. However, Bob

still needs to clear his own stack frame before returning, as there is no guarantee that Alice did

not keep a “fully initialized” stack capability, which would allow her to read leftover data on the

stack. For this calling convention, Georges et al. [2021] prove that LSE and WBCF are enforced;

however dangling stack pointers are still a possibility, and thus some clearing is still needed in

order to guarantee temporal confidentiality.

3.3 Directed Capabilities
We now introduce a novel kind of directed capabilities and then explain, in § 3.4, our new improved

calling convention, which relies on directed capabilities to efficiently guarantee LSE, WBCF and

temporal stack safety (as we prove in later sections).

The intention of directed capabilities is to restrict where they can be stored in memory. This is

done by adding a new locality directed, as illustrated in the locality lattice in Fig. 4. To write a

directed capability to memory it is then necessary to have permit-write-local authority (similarly

to writing local capabilities to memory), as shown in the operational semantics of store and

storeU in Fig. 5. The distinguishing feature of a directed capability is that it cannot be stored

“below” where it can read memory up to. That is, for a directed capability with a regular permission

(i.e., not uninitialized) with authority over range [𝑏, 𝑒 [, it can only be stored at an address 𝑎 such

that 𝑒 ≤ 𝑎. For an uninitialized directed capability (u𝜋, ℓ, 𝑏, 𝑒, 𝑎), the part [𝑎, 𝑒 [can only be written

to, therefore it can only be stored at an address 𝑎′ such that 𝑎 ≤ 𝑎′. The intuition is that, for a

stack that grows upwards, the address a stack capability can read up to implicitly approximates the

lifetime of the capability. Given two directed capabilities, if the first can read at a lower address

than the second, then the first is owned by an “older” stack frame than the second and has thus a

longer lifetime.

We remark that, from an hardware implementation point of view, directed capabilities should

be quite easy to implement. First, uninitialized directed capabilities require only two additional

bits, one for the directed locality, and one indicating whether it is uninitialized. Since increased

pointer size can severely affect performance, CHERI Concentrate [Woodruff et al. 2019] employs a

rigorous compression scheme to achieve realistic performance. Within this scheme, 2 and 7 bits

are reserved for future use in the CHERI-64 and CHERI-128 respective compression formats. The

two necessary additional bits are thus already available in either format. We can contrast that to

temporal capabilities [Tsampas et al. 2019], which require 𝑛 bits to encode the lifetime information

for a call depth of size 2
𝑛
. The required number of bits is thus unbounded, and it is unclear how

to determine the ideal least number of bits. Tsampas et al. discuss this exact point, and propose

various workarounds. Directed capabilities, on the other hand, already fit within existing formats.

Second, directed capabilities only change the semantics of load(U) and store(U) by adding an

extra bounds check. The added bounds check is no different from current checks, and we expect

existing optimisation patterns, such as parallelisation, to apply.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 A.L. Georges, A. Trieu, and L. Birkedal

3.4 A New Calling Convention using Directed Capabilities
Let us revisit the example in § 3.2, now assuming that the stack capability is directed instead of

local. When Bob is called by Alice, Bob can ensure that Alice did not keep a capability with read

authority on the unused part of the stack by checking that the return capability that he received

is not “above” the stack capability he received. This check can be avoided if the return capability

is passed on the stack as part of the calling convention. Indeed, if the return capability is stored

at some address 𝑎′, Bob knows by property of directed capabilities that Alice can only have kept

a copy of the stack capability with read authority at most up to 𝑎′. Thus, Bob will not have to

clear his stackframe on return. On the other hand, if Bob passes some stack references to Claire

as parameters, Claire will not be able to store anything from her own stackframe in them, thus

avoiding the issues described in § 2.2. In fact, Bob can take advantage of this property to ensure

that Claire only returns safe values. By passing a stack capability rather than a dedicated register

as the return value destination, Bob knows that any return value cannot grant read authority over

popped stack frames. The calling convention assumes this strategy, and clears all general purpose

registers upon return.

To sum up, our new calling convention is as follows; see also the figure below, which shows

what the stack is expected to look like just after a call.

At program start-up. A directed urwlx stack capability is in register 𝑟stk.

When called by an adversary. Check that the received stack capability is a capability of the form

(urwlx, directed, 𝑏, 𝑒, 𝑎), the return capability is expected to be stored at address 𝑏.

Before calling an adversary. Push activation record to the stack and create a directed e-capability to

use as return capability. Subseg the stack capability to the unused part. Push the return pointer

on the stack, as well as all parameters. Clear all registers except 𝑟stk and the program counter

before calling.

Before returning to an adversary. Clear all general purpose registers.

activation

code

return

capability

parameters

Caller’s

stackframe

Callee’s

stackframe

Let’s consider the cost of one secure call. Our new call-

ing convention does not require any memory clearing,

and thus incurs a constant overhead, mainly of clearing

registers. Register clearing can be done efficiently using

the CClearRegs instruction [Watson et al. 2020]. On the

other hand, memory clearing is a costly operation. Pre-

vious calling conventions based on local capabilities all

require some amount of stack clearing. Although Georges

et al. [2021] improves the situation by only clearing the

local stack frame, the calling convention still has an un-

desired linear cost in the amount of stack memory used.

In summary, we present a faster calling convention, which can realistically be implemented in

hardware. Moreover, the calling convention enforces all desired stack safety properties as is proved

in the next sections.

3.5 Discussion
While directed capabilities lead to an efficient calling convention, the questions remains whether

their new restrictions render them impractical otherwise. Specifically, do directed capabilities

hinder critical C idioms, or compiler optimizations to any significant extent. A full investigation of

this question is beyond the scope of this paper. However, we conjecture that directed capabilities are

sufficiently permissive in practice, and in some cases more practical than, e.g., linear capabilities.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:13

Some objects cannot be allocated on the stack. For instance, a locally allocated circular linked list

breaks the directed property. Similarly, any locally allocated node cannot be added to an ambient

heap allocated linked list. Indeed, nor should they: stack objects and heap objects often have

different lifetimes and are thus generally incompatible.

We do not expect uninitialized capabilities to have major impact on code generation, though

one must be careful to initialize an uninitialized object in “increasing” order. Similarly, it takes

linear time to allocate and pass stack objects, while C assumes constant time allocation. However,

we hasten to point out that it is in general only safe to pass stack objects for which the previous

contents cannot be read. [Roessler and DeHon 2018] enforce this efficiently using a lazy tagging and

clearing scheme; it would interesting to investigate a similar scheme for uninitialized capabilties.

Furthermore, a compiler must also be careful with the order of stack allocations. Consider for

instance the following code snippet:

in t ∗ x ; in t y ; x = &y ;

In the above code, the compiler must reorder the allocations for 𝑥 and 𝑦 to guarantee the directed

property. Such considerations must also be taken into account when implementing compiler

optimizations.

All in all, directed capabilities are more restrictive (by design) than local capabilities, but we

argue they remain more practical than linear capabilities. For instance, it is a common idiom in

C to pass pointers as an argument but not return them to the caller. With linear capabilities, a

compiler would need to ensure that all linear capabilities be returned when used in this fashion.

Furthermore, some library functions such as

in t memcmp(const void ∗ p1 , const void ∗ p2 , s i z e _ t s i z e)

are not implementable in an linearity-friendly way, since p1 and p2 are allowed to be aliases.

We leave a full practical evaluation of directed capabilities to future work.

4 A UNARY MODEL FOR INTEGRITY
In this section, we develop a novel model that captures all the guarantees provided by directed

capabilities and our associated calling convention. The core novelty lies in its ability to express

temporal stack safety. The model is made up of two components; a program logic to reason about

known and trusted code, and a Kripke logical relation to reason about arbitrary untrusted code.

We use the unary model to reason about the integrity of example programs.

The program logic is a variant of the one by Georges et al. [2021]; the main change is that

some proof rules have been updated to account for directed capabilities, following the operational

semantics defined in § 3.1. Thus we refrain from describing the program logic in detail.

Here it suffices to know that the program logic is defined using Iris’ weakest preconditions [Jung

et al. 2018] (which means that we can re-use the Iris program logic infrastructure to reason formally

in Coq) and that the weakest precondition predicate wp Executable {𝑣,𝑄 (𝑣)} intuitively means

the program pointed to by the program counter can execute without getting stuck, and that if it

terminates, then 𝑄 (𝑣) is guaranteed to hold for some final mode 𝑣 , which can be either Halted or

Failed.

Thanks to the dynamic checks of the capability machine, the behaviour of a program is limited by

the capabilities it has access to. Thus, even completely arbitrary code must adhere to rules imposed

by the capability machine, and will satisfy some notion of capability safety. The logical relation

captures this notion of capability safety, and serves as a contract between trusted and untrusted

code. The fundamental theorem of logical relations (see below) means that any word that is safe to

read satisfies that contract. As long as arbitrary code is just a list of instructions (and thus does not,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 A.L. Georges, A. Trieu, and L. Birkedal

e.g., include an embedded capability), a corollary then states that even completely arbitrary code

satisfies that contract.

Our logical relation is an extension of the one by Georges et al. [2021] and our presentation

focuses on the key challenge, which is to extend the model, in particular, the Kripke worlds,

to capture the enforcement of temporal properties qua directed capabilities. The execution of a

program depends on the physical state of memory. Since we want to reason about stack safety, we

are particularly interested in the state of the stack. During execution, different parts of the stack are

in different states (e.g. used, unused, etc.). Following Georges et al., we use a Kripke world to model

the abstract state of the stack. In essence, the Kripke world is an abstraction of physical memory.

Concretely, it tracks which parts are in heap space, which parts are in stack space, and at what

particular state a location is. The stack may change in ways that accord with the specific properties

we attribute to stack safety. We capture stack-based properties by carefully describing the possible

changes to the Kripke world so that they reflect the expected behaviour of the physical stack.

From a technical point of view, a WORLD has two parts:𝑊 std
maps addresses to so-called

standard states, governing shared regions, such as the stack; and𝑊 cus
maps a countably infinite set

of region names to custom state transition systems, governing owned regions, such as the private

environment of closures.

The logical relation imposes certain invariants on regions of memory that is shared between

trusted and untrusted code. Those invariants depend on the state of the stack, and thus on the

Kripke world that represents it. We use Iris ghost state to track not only the physical machine state,

but also what we call the instrumented machine state, which captures the connection between the

physical memory, and the abstract state of memory. It uses an Iris predicate called the standard

resource. A standard resource has two functions: (1) it associates an address of a shared region of

memory, in particular each stack address, to its physical state, and (2) it associates that physical

state to an invariant. The invariant may depend on the current state of the Kripke world. Our model

extends Georges et al. [2021] insofar as it uses the same structure for the instrumented machine

state. However, in order to capture temporal properties, we define a novel Kripke world, upon

which we build new definitions for the standard resources. In this paper, we focus a large part of

our attention on the new Kripke world.

In the remainder of this section we first describe the standard states we use to capture stack and

heap states, and how these states may evolve, such that they can be used to capture the desired

stack properties (§ 4.1). In § 4.2, we will then present the logical relation itself. Finally, we end this

section with two examples highlighting what kind of programs we can now verify using our model

(§ 4.3).

4.1 A New Kripke World
The standard states represent the various states a shared memory address can be in. An address is

shared if it lies within the region of authority of a capability that crosses the boundary between

known and arbitrary code. The physical state of these addresses will be imposed by invariants,

which may in turn depend on the current state of the rest of the machine. For instance, the invariant

of a heap region should not be able to depend on the state of the stack and its changes, since locality

dictates that the heap is unable to contain stack pointers. Likewise, the invariant of a stack address

connected to a lower stack frame will be different from the invariant of the currently live, or popped

stack frame. The standard states must therefore also reflect the very specific lifetime properties of

a stack frame.

We now explain each of the standard states. The Permanent state represents an allocated heap

region. As soon as a heap region is allocated and shared, it becomes permanent. There is no

mechanism to free the heap region from its state. The Temporary state represents a live stack

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:15

Temporary

Revoked

Frozen(𝑚) Uninitialized(𝑤) Permanent

Fig. 6. Standard State Transition System. Full lines indicate public transitions, dashed lines indicate private

transitions, orange lines indicate temporal transitions.

frame, i.e., the stack frame owned by the currently executing function. Specifically, it will refer

to the readable parts of the stack shared between calls. A live stack frame does not need to be

Temporary at every step of execution. Rather, the Temporary state is meant to represent the live

parts of the stack at the point of change of control. The Uninitialized state represents the unused

part of the stack, i.e., a Freed frame or some part of the stack that has never been used. In general,

the Uninitialized state will simply refer to the parts of the stack that cannot be read from, only

written to. The Frozen(𝑚) state represents a frozen stack frame, i.e., the parts of a frame not shared

with a new callee. Here m maps the addresses of that particular frame to their frozen values. The

Revoked state represents a part of the stack which is currently owned by an executing function. A

region is not part of the shared stack while it is Revoked.

Next we define how a standard state may evolve in order to reflect physical stack changes that

accord with the key properties of stack safety (LSE, WBCF, and temporal stack safety). Some stack

changes are not observable by any caller or callee, whereas other changes are public and observable

by both. As long as temporal stack safety is enforced, some stack changes (such as popping a stack

frame) are safe to observe by the caller, but not by higher stack frames. After all, it is not safe to

pop a frame if there are still live frames on top of it.

We use three kinds of transitions to reflect these distinctions. A transition is observable whenever

some entity is oblivious to that transformation. Public transitions (depicted in Fig. 6 as straight

black lines) are those that are observable by all functions. Private transitions (dashed lines) can

only be observed by the currently executing function. Finally, temporal transitions (orange lines)

are only observable by functions that are still present on the call stack.

Using these transitions, we isolate three future world relations. A worldW
′
is a public future

world of W ,𝑊 ′ ⊒pub 𝑊 , if all the states in W
′
are either connected to a fresh address or region

name, or were updated fromW through public transitions only. A private future world𝑊 ′ ⊒priv 𝑊

allows for public, temporal or private transitions. Finally, the third relation we consider is in fact a

family of future world relations, where each relation is indexed by an address. We say that W
′
is a

future world of W relative to address a, written as𝑊 ′ ⊒a 𝑊 , when the state of all addresses below

a were updated via public transitions only, while addresses at or above a were updated via public

or temporal transitions.

For instance, consider an address a
′
that is Temporary in W . If that address lies below a, it must

still be Temporary in W
′
if𝑊 ′ ⊒a 𝑊 . However, if that address lies at or above a, it may change to

an uninitialized state. Likewise, any address at or above a with an Uninitialized(𝑤) state inW may

change to a new Uninitialized(𝑤 ′) state.
A relative future world relation captures the changes to a stack relative to a specific stack frame

(delimited by its upper bound address). From the point of view of a particular stack frame, a new

call will push then pop new stack frames, whereas that stack frame remains frozen or initialized.

Upon return of a well-bracketed call, a stack frame is safe to pop. In other words, invoking a return

capability should be safe to do in a world where the current as well as all higher stack frames are

uninitialized. In𝑊 ′ ⊒a 𝑊 , worldW
′
represents such a world, from the perspective of a stack frame

with upper bound a.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 A.L. Georges, A. Trieu, and L. Birkedal

The instrumented machine state imposes monotonicity requirements on the invariants associated

with shared addresses
4
. If a shared address a is part of the heap, then the associated invariant

must be monotone with regards to ⊒priv
. On the other hand, if a is part of the (live) stack, then the

associated invariant must be monotone with regards to ⊒a
.

We finish this section by highlighting some interesting transitions, relating them to the corre-

sponding physical state changes of the stack:

• Temporary −−−→ Frozen(𝑚): local variables freeze when their associated function makes a

new call. These local variables are stored in a stack frame. The frozen part of a stack frame cannot

be written to while it is frozen. A stack frame cannot stay frozen forever. In particular, a frozen

stack frame must thaw when control is returned to its caller. A caller should therefore not be

able to observe that the stack frame was at any point frozen during execution, hence the private

transition.

• Frozen(𝑚) −−−−−−−→ Temporary: as indicated in the previous point, a frozen stack frame must

thaw before it can be written to again. A frozen stack frame is thawed only after a callee invokes

the callback. Temporal stack safety dictates that only higher stack frames can invoke the callback.

Invoking the callback effectively pops the callee’s stack frame. Thus a local stack frame is thawed

once all higher stack frames have been popped, but has no effect on lower stack frames.

• Temporary −−−−−−−→ Uninitialized(𝑤): Finally, local stack frames are popped upon return. Thanks

to temporal stack safety, popping a stack frame has no effect on lower stack frames, since they

cannot read its content.

In summary, we have presented the standard states and transitions that make up the new Kripke

world used to model LSE, WBCF and now also temporal stack safety. The world differs from

[Georges et al. 2021] in the following way: we distinguish between the Uninitialized state (shared

write access but no shared read access) and the Frozen state (no shared write or read access), and

we introduce a new kind of transition for defining a relative future world relation, capturing the

temporal properties of the stack.

4.2 A Unary Logical Relation
Fig. 7 defines the unary Kripke logical relation with support for temporal stack safety. We depict in

blue the parts of the definition that are different from the unary logical relation used by Georges

et al. [2021].

The value relation V : WORLD → Word → iProp defines the validity of a word relative to a

world; the register relation R defines the validity of a register state; and the expression relation

E defines when it is is safe to use a word as the program counter. Note that all relations are defined

in the Iris program logic (cf. the type iProp for Iris propositions). We now explain the definition,

and first consider the value relation. Integers and words with o capability are always valid. A word

with a read and/or write permission is valid in a world W only if certain conditions on W are met.

A global capability with a read and/or write permission imposes a Permanent state on its range

of authority. An uninitialized capability with a write-local (i.e., it can be used to store local and

directedwords) permission imposes aTemporary state on its initialized readable range of authority,

whereas its uninitialized part may be either Temporary or Uninitialized. The state relations S and

S𝑢
define the exact conditions on W for regular and uninitialized capabilities respectively.

A valid capability with read and/or write permission grants access to the so-called standard

resources alluded to in the beginning of this section: rel(𝑎, 𝜙) associates the memory predicate

𝜙 : WORLD → Word → iProp to the address a. It suffices to think of rel(𝑎, 𝜙) as an invariant, that

4
The formal definitions of the instrumented machine state and standard resources are here omitted for brevity, full definitions

can be found in the Coq formalisation.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:17

E(𝑊) (𝑣) ≜ ∀reg, R(𝑊) (reg) ∗ sharedResources(𝑊) ∗ stsCollection(𝑊) ∗ pc ↦→ 𝑣

∗ ∗(𝑟,𝑤) ∈reg/pc 𝑟 ↦→ 𝑤 −−∗

wp Executable

𝑣, 𝑣 = Halted → ∃𝑊 ′

reg
′, 𝑊 ′ ⊒𝑝𝑟𝑖𝑣 𝑊

∗ sharedResources(𝑊 ′) ∗ stsCollection(𝑊 ′)
∗ ∗(𝑟,𝑤) ∈reg′ 𝑟 ↦→ 𝑤

R(𝑊) (reg) ≜ ∗(𝑟,𝑤) ∈reg/pc V(𝑊) (𝑤)

V(𝑊) (𝑤)

V(𝑊) (𝑧) ≜ ⊤
V(𝑊) (o,−) ≜ ⊤

V(𝑊) (𝑝,𝑔, 𝑏, 𝑒, 𝑎) ≜ ∗𝑎′∈[𝑏,𝑒 [

{
S𝑢 (𝑊) (𝑎′, 𝑔, 𝑝, 𝑎) if 𝑝 = u-

S(𝑊) (𝑎′, 𝑔, 𝑝) otherwise

∧
{
∃𝑃, rel(𝑎′, 𝑃) ∗ rcond(𝑃) if 𝑝 ∈ {ro, rx}
rel(𝑎′,V) otherwise

V(𝑊) (e, 𝑔, 𝑏, 𝑒, 𝑎) ≜ □ ∀𝑊 ′ ⊒𝑔 𝑊, ⊲ E(𝑊 ′) (rx, 𝑔, 𝑏, 𝑒, 𝑎)
rcond(𝑃) ≜ ⊲□∀𝑊,𝑤, 𝑃 (𝑊) (𝑤) −−∗ V(𝑊) (𝑤)

∗ ⊲□∀𝑊1,𝑊2, 𝑧, 𝑃 (𝑊1) (𝑧) −−∗ 𝑃 (𝑊2) (𝑧)

State relation

S(𝑊) (𝑎,𝑔, 𝑝) ≜

𝑊 std (𝑎) ∈ {Temporary, Permanent} if ¬write-local(𝑝) ∧ 𝑔 = directed

𝑊 std (𝑎) = Temporary if write-local(𝑝) ∧ 𝑔 = directed

𝑊 std (𝑎) = Permanent if 𝑔 ≠ directed

S𝑢 (𝑊) (𝑎,𝑔, 𝑝,𝑚𝑖𝑑) ≜

S(𝑊) (𝑎,𝑔, 𝑝) ∨ ∃𝑤,𝑊 std (𝑎) = Uninitialized(𝑤) if 𝑎 ≥ 𝑚𝑖𝑑

∧ 𝑔 = directed

S(𝑊) (𝑎,𝑔, 𝑝) if 𝑎 < 𝑚𝑖𝑑

∨ 𝑔 ≠ directed

Fig. 7. A Logical Relation with Support for Temporal Stack Safety. ⊒g
equals ⊒priv

whenever g is global or

local, and ⊒e
whenever g is directed

can be used to access the ghost state of 𝑎, while guaranteeing that 𝜙 holds at the current physical

state of 𝑎 in the current world W . Normally, the predicate we associate with such an address 𝑎

would beV itself. However, we distinguish between a read-only and a read-write permission by

allowing the associated predicate of an address within a read-only region to be stronger thanV .

The predicate in question then needs to satisfy the read condition rcond(𝜙), which imposes two

restrictions on 𝜙 . First, it enforces that 𝜙 (𝑊) (𝑤) always implies validity, regardless ofW and w.

Second, it enforces that 𝜙 (𝑊) (𝑤) never depends on W when w is an integer. In other words, only

capabilities can depend on the instrumented machine state. Notice how each condition is guarded

by a later (⊲) modality; this is to guarantee that the definition of V is well defined (here we use

that Iris supports the definition of guarded recursive predicates).

An e capability can only be jumped to, hence its validity is defined in terms of its safe execution.

Such a capability can be jumped to at any moment and hence the property should be persistent

(i.e., not rely on any ephemeral resources); this is expressed by Iris’ persistence modality □. The
execution of a capability may depend on the current state of the stack. For instance, a global e

capability represents a global function closure, and is safe to jump to regardless of the state of

the stack. On the other hand, a directed closure (used for return pointers) is only safe to jump

to at the end of a function’s execution. This distinction is made by quantifying over the possible

future worlds an e capability may be invoked from, see𝑊 ′ ⊒𝑔 𝑊 . A global or local closure can

be invoked in any private future world of W , whereas a directed closure can only be invoked in a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 A.L. Georges, A. Trieu, and L. Birkedal

relative future world𝑊 ′ ⊒e 𝑊 , where e will represent the upper bound of the stack frame being

returned to.

Finally, the safe execution of a word is defined using the expression relation E. The expression
relation is defined in terms of the program logic that the logical relation is built upon. Specifically,

E(W) (w) expresses that given an instrumented machine state beginning at worldW , and a safe

register state R(𝑟), the word w is safe to execute. That is, the weakest precondition holds for a

configuration in which the pc contains w, with a post condition that enforces the instrumented

machine state, i.e., all the established invariants hold at some private future world.

Now that we have our definition of the logical relation in place, we can state the fundamental

theorem of logical relations. We refer to the Coq mechanisation for its full proof, and the technical

report [Georges et al. 2022, Appendix A] for a proof sketch.

Theorem 4.1 (FTLR). Assume that 𝑝 = rx, 𝑝 = rwx or (𝑝 = rwlx ∧ 𝑔 = directed). Assume also

thatV(𝑊) (𝑝,𝑔, 𝑏, 𝑒, 𝑎). Then we have that E(𝑊) (𝑝,𝑔, 𝑏, 𝑒, 𝑎).
4.3 Examples
We show how to use the unary model to prove safety of two example programs: Listings 7 and 9 in

capability machine code. These two examples illustrate two properties that have not been explored

in previous formalizations. Each program uses an assert subroutine that tests the integrity of

encapsulated state. Although we will not present it in this paper, we have also proved the safety of

the awkward example (Lis. 5), which can be found in the Coq mechanization.

4.3.1 Protection against Dangling Stack Pointers. Fig. 8 depicts a program with an assertion whose

success depends on the absence of dangling stack pointers. g1 creates a closure around some

code f1 and a dynamically allocated location containing the integer 2. The macro crtcls [𝑟2]
𝑟3 allocates a closure where 𝑟3 points to the closure’s code (created using the offset from g1 to

f1), and 𝑟2 points to the newly allocated environment; the resulting closure is an enter capability.

(closure creation around f1)

g1: malloc 𝑟2

store 𝑟2 2

move 𝑟3 pc

lea 𝑟3 offset

crtcls [𝑟2] 𝑟3

jmp 𝑟0

f1: prepstack 𝑟
stk

loadU 𝑟0 𝑟
stk

(-1)

(intentional leak)

push 𝑟env

load 𝑟env 𝑟env

(integrity assertion)

assert 𝑟env 2

rclear RegName\{pc, 𝑟0 }
jmp 𝑟0

Fig. 8. Assembly of Lis. 7

f1 applies the calling convention from § 3.4: (1) it prepares the

stack by checking that the stack has permission urwlx and lowers

its address to point to the bottom of its bound, and (2) it loads

the return capability parameter which has been passed on the

stack itself. Now the idea is that since the parameter was stored

on the stack, it must either be a heap closure, or a stack allocated

activation record of an older stack frame qua temporal stack safety.

Thus, when f1 attempts to leak the private capability of the closure

by pushing a copy of the private capability onto the stack, temporal

stack safety ought to ensure that the content of the stack frame

cannot be read once popped and thus that the leaked capability

remains inaccessible from the environment after we return from f1.
Finally, f1 clears the registers and returns to the caller by invoking

the return capability that was passed on the stack. Note that f1’s
stack frame is not cleared.

Recall that f1’s assertion hinges on the fact that any caller to the

closure created by g1 is not able to read the popped stack frame (§ 2.2.1). We use the unary model

to prove that within any arbitrary context of a certain layout, the assertion flag associated with the

assert subroutine stays at 0 at every step of the execution, meaning that the assertion never fails.

Theorem 4.2. (Correctness of the temporal stack safety example) Let reg ∈ Reg, m ∈ Mem and

𝑐temp ≜ (rx, global, ...) 𝑐stk ≜ (urwlx, directed, ...) 𝑐adv ≜ (rwx, global, ...)
where the capabilities have an appropriate range of authority and pointer. Furthermore, assume that:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:19

• 𝑚 has been initialized with the code of the program and subroutines (pointed to by 𝑐temp), an

uninitialized stack (pointed to by 𝑐stk), and unknown adversarial code (pointed to by 𝑐adv);

• reg(pc) = 𝑐temp, reg(𝑟stk) = 𝑐stk, reg(𝑟0) = 𝑐adv and reg(𝑟) ∈ Z otherwise;
• flag denotes the assertion flag, initialized to 0;

If (Executable, (reg,𝑚)) →∗ (𝜇, (reg′,m′)) then𝑚′(flag) = 0.

Proof. We prove this statement in two stages. First, we show that g1 is safe according to

the expression relation in any world𝑊 ; E(𝑊) (e, global, 𝑏temp, 𝑒temp, g1). Next, we conclude by
applying the adequacy of weakest preconditions. □

4.3.2 Local State Integrity and Stack Objects. We now consider what happens with local state

encapsulation in the presence of stack objects. One might expect that this property is rather

straightforward: a shared stack object is not encapsulated, but capability bounds ensure that

the other parts of the stack are hidden from the context, and that their integrity is guaranteed.

(closure creation around f2)

g2: move 𝑟1 pc

lea 𝑟1 offset

restrict 𝑟1 encodePerm(e)
jmp 𝑟0

f2: (the linked code is a heap closure)

reqglob 𝑟
adv

(calling convention)

prepstack 𝑟
stk

loadU 𝑟1 𝑟
stk

(-1)

(integrity protection)

reqRA 𝑟1

checkintregion 𝑟1

(hidden part of stack)

push “secret”

(new stack object)

createstackobj 𝑟2 “obj”

(call linked code)

scall 𝑟
adv

[𝑟0; 𝑟env] [𝑟1; 𝑟2]
lea 𝑟

stk
(-6)

(load hidden part of stack)

loadU 𝑟
adv

𝑟
stk

(-2)

(assert its integrity)

assert 𝑟
adv

“secret”

(return to caller)

loadU 𝑟1 𝑟
stk

(-4)

rclear RegName\{pc, 𝑟1 }
jmp 𝑟1

Fig. 9. Assembly of Lis. 9

However, subtle issues creep up if one is not careful about the

parameters exposed to the context, in particular in the cases where

a stack object is passed from the caller to a callee. Consider Fig. 9,

where g2 creates a closure around some code f2, which in turn calls
some unknown linked code, to which f2 passes two parameters: a

stack object that was passed to f2 from its caller, and a new stack

object created by f2. In the callback, the integrity of the unshared

parts of f2’s stack frame is tested with an assertion. f2 begins by
checking that the linked unknown code is indeed a heap closure

(using a macro reqglob). f2 then applies the calling convention

from § 3.4 by checking the permission of the stack capability, and

loading a parameter from the stack; here the parameter of interest

is the older stack object passed to f2 by the caller.

Since this stack object was passed through the stack, its read au-

thority must be smaller (i.e. lower) than f2’s stack frame. However,

directed capabilities do not enforce any restrictions on the write

authority of that stack object. In fact, this passed stack object could

in principle be an uninitialized capability with a write authority

that overlaps with f2’s stack frame, thus presenting a threat to the

integrity of the stack frame if passed to some unknown code.

To mitigate that threat, f2must dynamically check not only that

the stack object itself is fully initialized, but also that it transitively

does not provide any write access to f2’s stack frame. In this partic-

ular example, f2 expects a stack object containing simply integers;

checkintregion is a macro for checking this. For other examples,

other mitigations could be done to inspect the permission of all

reachable capabilities within the stack object.

Theorem 4.3. (Correctness of the stack object example)

Let reg ∈ Reg, m ∈ Mem and

𝑐stkobj ≜ (rx, global, ...) 𝑐stk ≜ (urwlx, directed, ...) 𝑐adv ≜ (rwx, global, ...)
where the capabilities have an appropriate range of authority and pointer. Furthermore, assume that:

• 𝑚 has been initialized with the code of the program and subroutines (pointed to by 𝑐stkobj), an

uninitialized stack (pointed to by 𝑐stk), and unknown adversarial code (pointed to by 𝑐adv);

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 A.L. Georges, A. Trieu, and L. Birkedal

• reg(pc) = 𝑐stkobj, reg(𝑟stk) = 𝑐stk, reg(𝑟0) = 𝑐adv and reg(𝑟) ∈ Z otherwise;
• flag denotes the assertion flag, initialized to 0;

If (Executable, (reg,𝑚)) →∗ (𝜇, (reg′,m′)) then𝑚′(flag) = 0.

Discussion. We emphasize that the dynamic checking of the content of a stack object would

always have been necessary, including in calling conventions based on local capabilities [Sko-

rstengaard et al. 2018]. However, in all prior examples, including the awkward example considered

by Georges et al. [2021], this subtlety never arose, since they did not consider stack objects at all.

For instance, the awkward example only allows global heap closures as input. The issue is worse

for local or directed stack closures, for which no dynamic check can be done. In these cases, the

only safe option is to very carefully control what other parameters are passed alongside the closure.

5 A BINARY MODEL FOR CONFIDENTIALITY
So far, we have shown how to use the unary model to reason about examples that depend on

integrity properties. To reason about confidentiality properties we must use a binary model. For

the temporal aspect of local state confidentiality, we expect that a popped frame should not be able

to influence the caller, and thus that two programs whose only difference is to leave different traces

on their stack frames ought to be contextually equivalent. We define a binary logical relation and

use it to show the contextual equivalence of assembly versions of f and g from Lis. 8. We follow

well-known techniques for defining binary logical relations in Iris [Frumin et al. 2018; Krebbers

et al. 2017b; Krogh-Jespersen et al. 2017], but apply them here for the first time to a low-level

capability machine language. The logical relation is parameterised by a binary version of the world.

The key technical aspect of the definition is to allow for the uninitialized part of the stack to be

uninitialized at different words. We will return to this key aspect later. First, let’s examine some

high-level aspects of the definition of the binary logical relation.

The logical relation, presented in fig. 10, captures program refinement. We depict in blue the

parts of the definition that are different from the unary logical relation. The expression relation

E(𝑣1, 𝑣2) describes that the program pointed to by capability 𝑣1, thought of as the implementation,

refines the program pointed to by capability 𝑣2, thought of as the specification. The trick in defining

logical refinements in Iris is to use ghost state (separate from the state interpretation) to track the

current state and expression of the specification.

In our low level capability machine, this means we use ghost state to track the state of specification

registers, denoted 𝑟 ↣ 𝑤 , the state of specification memory, denoted 𝑎 ↣ 𝑤 , and the current

execution mode of the specification program, denoted Z⇒ 𝜇. As usual, these ghost state assertions

depict fragmental views of the ghost state. We store the full authoritative view in an Iris invariant,

henceforth denoted specCtx.

The expression relation can roughly be interpreted as follows: given an implementation register

state that refines a specification register state, where both the implementation and specification

are in Executable mode, if the implementation halts, then the specification must also halt, and

all established invariants of the (binary) instrumented machine state hold at some private future

world.

Capability machine programs are able to observe and compare words. As a first step towards

a value relation, we thus observe that a word 𝑤1 can only refine 𝑤2 if they are equal. However,

syntactic equivalence is not enough. Capabilities that grant read authority must themselves point

to refined memory fragments. Just as in the unary case, we use the (binary) instrumented machine

state to relate the memory fragments within the authority of a valid capability. The binary state

relation enforces appropriate standard states on the world. These standard states are as in fig. 6,

except the Uninitialized state now records two words, one for the specification and one for the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:21

E(𝑊) (𝑣1, 𝑣2) ≜ ∀ reg1, reg2,

R(𝑊) (reg1, reg2) ∗ sharedResources(𝑊) ∗ stsCollection(𝑊)
∗ pc ↦→ 𝑣1 ∗ pc↣ 𝑣2
∗ Z⇒ Executable

∗ ∗(𝑟,𝑤1) ∈reg1/pc ∧ (𝑟,𝑤2) ∈reg2/pc 𝑟 ↦→ 𝑤1 ∗ 𝑟 ↣ 𝑤2 −−∗

wp Executable

𝑣, 𝑣 = Halted →
∃𝑊 ′

reg
′
1
reg

′
2
, 𝑊 ′ ⊒𝑝𝑟𝑖𝑣 𝑊

∗ Z⇒ Halted

∗ sharedResources(𝑊 ′) ∗ stsCollection(𝑊 ′)
∗ ∗(𝑟,𝑤1) ∈reg′

1
∧ (𝑟,𝑤2) ∈reg′

2

𝑟 ↦→ 𝑤1 ∗ 𝑟 ↣ 𝑤2

R(𝑊) (reg1, reg2) ≜ ∗(𝑟,𝑤1) ∈reg1/pc ∧ (𝑟,𝑤2) ∈reg2/pc V(𝑊) (𝑤1,𝑤2)

V(𝑊) (𝑤1,𝑤2)

V(𝑊) (𝑧1, 𝑧2) ≜ 𝑧1 = 𝑧2
V(𝑊) ((o, 𝑔, 𝑏, 𝑒, 𝑎),𝑤2) ≜ (o, 𝑔, 𝑏, 𝑒, 𝑎) = 𝑤2

V(𝑊) ((e, 𝑔, 𝑏, 𝑒, 𝑎),𝑤2) ≜ (e, 𝑔, 𝑏, 𝑒, 𝑎) = 𝑤2

∗□ ∀𝑊 ′ ⊒𝑔 𝑊, ⊲ E(𝑊 ′) ((rx, 𝑔, 𝑏, 𝑒, 𝑎),
(rx, 𝑔, 𝑏, 𝑒, 𝑎))

V(𝑊) ((𝑝,𝑔, 𝑏, 𝑒, 𝑎),𝑤2) ≜ (𝑝,𝑔, 𝑏, 𝑒, 𝑎) = 𝑤2

∗∗𝑎′∈[𝑏,𝑒 [

{
S𝑢 (𝑊) (𝑎′, 𝑔, 𝑝, 𝑎) if 𝑝 = u-

S(𝑊) (𝑎′, 𝑔, 𝑝) otherwise

∧
{
∃𝑃, rel(𝑎′, 𝑃) ∗ rcond(𝑃) if 𝑝 = ro|rx
rel(𝑎′,V) otherwise

rcond(𝑃) ≜ ⊲□∀𝑊,𝑤1,𝑤2, 𝑃 (𝑊) (𝑤1,𝑤2) −−∗ V(𝑊) (𝑤1,𝑤2)
∗ ⊲□∀𝑊1,𝑊2, 𝑧1, 𝑧2, 𝑃 (𝑊1) (𝑧1, 𝑧2) −−∗ 𝑃 (𝑊2) (𝑧1, 𝑧2)

State relation

S(𝑊) (𝑎,𝑔, 𝑝) ≜

𝑊 std (𝑎) ∈ {Temporary, Permanent} if ¬write-local(𝑝) ∧ 𝑔 = directed

𝑊 std (𝑎) = Temporary if write-local(𝑝) ∧ 𝑔 = directed

𝑊 std (𝑎) = Permanent if 𝑔 ≠ directed

S𝑢 (𝑊) (𝑎,𝑔, 𝑝,𝑚𝑖𝑑) ≜

S(𝑊) (𝑎,𝑔, 𝑝)

∨ ∃𝑤1,𝑤2,𝑊
std (𝑎) = Uninitialized(𝑤1,𝑤2) if 𝑎 ≥ 𝑚𝑖𝑑

∧ 𝑔 = directed

S(𝑊) (𝑎,𝑔, 𝑝) otherwise

Fig. 10. A Binary Logical Relation with Support for Temporal Stack Safety

implementation. Crucially, since a directed capability only grants write authority to its uninitialized

part, the content of the latter cannot affect program execution. The state interpretation thus allows

the content of implementation side uninitialized memory to differ from its specification counterpart,

as reflected by the standard state Uninitialized(𝑤1,𝑤2). This is the key point that allows us to verify
the contextual equivalence of programs that depend on the temporal aspect of confidentiality.

Theorem 5.1 (Binary FTLR). Assume that 𝑝 = rx, 𝑝 = rwx or (𝑝 = rwlx ∧ 𝑔 = directed).
Assume also that V(𝑊) ((𝑝,𝑔, 𝑏, 𝑒, 𝑎), (𝑝,𝑔, 𝑏, 𝑒, 𝑎)) and the invariant specCtx. Then we have that

E(𝑊) ((𝑝,𝑔, 𝑏, 𝑒, 𝑎), (𝑝,𝑔, 𝑏, 𝑒, 𝑎)).

We use the logical relation to show contextual equivalence of components. Informally, two

components are contextually equivalent if no context can distinguish them through termination. A

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:22 A.L. Georges, A. Trieu, and L. Birkedal

component is either a library or a main component. A component 𝐶 can be considered a context

for component comp when their linking 𝐶 [comp] generates a closed program, that is, there are

no imports left to satisfy. We only consider components that are well-formed. A component is

well-formed if its memory segment does not overlap with the stack memory, and all capabilities

that it contains only address its own memory segment, and are not permit-write-local. The initial

state of a closed program is a state where the register file contains only 0, except for the program

counter, which should be initialized to the entry point of the program, and 𝑟stk, which should be

initialized with the stack capability. The memory is empty except for the part specified by the

memory segment of the program, and the stack, which is initialized with arbitrary words. These

definitions are formally stated in [Georges et al. 2022, Appendix B]. We use them to formally define

contextual equivalence.

comp
1
≈ctx comp

2
≜ ∀𝐶,𝐶 [comp

1
] ⇓ ⇐⇒ 𝐶 [comp

2
] ⇓

We use 𝑐 ⇓ to denote that the configuration 𝑐 terminates in a Halted state.

f3: prepstack 𝑟
stk

loadU 𝑟0 𝑟
stk

(-1)

push 2

rclear RegName\{pc, 𝑟0 }
jmp 𝑟0

h3: prepstack 𝑟
stk

loadU 𝑟0 𝑟
stk

(-1)

push 3

rclear RegName\{pc, 𝑟0 }
jmp 𝑟0

Fig. 11. Assembly of Lis. 8

Let’s use the binary model to prove the equivalence of the two

programs from lis. 8. Fig. 11 depicts their low level implementation.

f3 pushes 2 onto the stack, clears its registers and jumps to a return

capability loaded from the stack. h3 behaves similarly, except it

pushes 3 onto the stack. The two programs leave different traces

on their respective stack frames, but if temporal confidentiality is

enforced, no caller can distinguish them. We use the binary model

to show that the two programs refine each other according to our

logical refinement definition. We then apply the adequacy of weak-

est preconditions to prove the following contextual equivalence:

Theorem 5.2. (Correctness of the temporal confidentiality example) Let comp𝑓 3 and compℎ3 be

two components containing the programs f3 and h3 respectively, where

comp𝑓 3 .exports ≜ {0 : (e, global, ..., f3)} compℎ3 .exports ≜ {0 : (e, global, ..., h3)}
in which the respective exported entry points have an appropriate range of authority and pointer.

Furthermore, assume that contexts are defined as well-formed components with no exports, a single

import 0, and a memory segment with instructions (integers) only. Then

comp𝑓 3 ≈ctx compℎ3

Proof. The heart of the proof lies in showing V(𝑊) ((e, global, · · · , f3), (e, global, · · · , h3))
(and in the other direction) for the appropriate bounds and worldW . The difficulty lies in handling

the stack address with potentially distinguishing content. Let a be the stack address that contains

different integers in the two runs. Upon invoking the return capability, the instrumented machine

state must reflect that distinction. However, since we are jumping to an older frame, we can

uninitialize the popped part of the stack, including address a. We thus end up with a worldW
′
in

which𝑊 ′std (𝑎) = Uninitialized(2, 3). We finish the proof by applying the fundamental theorem on

the return capability, which by monotonicity is in the binary logical relation at world W
′
. □

6 CHARACTERIZING SECURITY USING A FULLY ABSTRACT OVERLAY SEMANTICS
The unary and binary model can be used to prove the integrity and confidentiality of example

programs that may depend on any of the five properties presented in § 2.1. While the unary and

binary model capture integrity and confidentiality properties, and proving examples increase our

confidence in the calling convention, they do not define any notion of stack safety. Rather than

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:23

detailing examples that vaguely cover all properties, we wish to truly capture this notion of stack

safety, and prove that our new calling convention enforces it.

To that end, we follow the same approach as Skorstengaard et al. [2019b] for proving that our

calling convention does enforce the security properties we claim. We first start by describing an

overlay semantics (§ 6.1) whose aim is to clearly capture the properties included in our notion of

stack safety. Then, we prove a full abstraction theorem between the overlay semantics and the

original base capability machine semantics (§ 6.2).

6.1 Overlay semantics
The overlay semantics augments the base semantics of the capability machine with additional

structure to model the properties we wish to enforce, these components are indicated in blue.

𝑐 ∈ Cap ≜ {(𝑝, ℓ, 𝑏, 𝑒, 𝑎) | 𝑏, 𝑒, 𝑎 ∈ Addr}
∪ {Stk(𝑑, 𝑝, 𝑏, 𝑒, 𝑎) | 𝑑 ∈ N, 𝑝 ∈ Perm, 𝑏, 𝑒, 𝑎 ∈ Addr}
∪ {Ret(𝑏, 𝑒, 𝑎) | 𝑏, 𝑒, 𝑎 ∈ Addr}

instr F . . . | call 𝑟 ®𝑟
sf ∈ Stackframe ≜ (Reg ×Mem)
𝜑 ∈ ExecConf ≜ Reg ×Mem × Mem × list Stackframe

Syntax. Configurations in the overlay semantics now track a list of overlay stack frames, and

natively separate the heap and stack memory. Configurations are now quadruples (reg, h, stk, cs)
where reg and stk are the current register state and current stack frame. h is the state of the heap,

while cs corresponds to the call stack, a list of saved register states and stack frames.

The overlay semantics has two additional kinds of capabilities; stack derived capabilities

Stk(𝑑, 𝑝, 𝑏, 𝑒, 𝑎), and return capabilities Ret(𝑏, 𝑒, 𝑎). A capability Stk(𝑑, 𝑝, 𝑏, 𝑒, 𝑎) provides access
to the 𝑑 th stack frame with permission 𝑝 over range [𝑏, 𝑒 [, and currently points to address 𝑎. That

is, if the current state is (reg, h, stk, cs), then 𝑑 = 0 provides access to the oldest stack frame (i.e., at

the tail of cs), while 𝑑 = |𝑐𝑠 | provides access to the current stack frame stk. For instance, if |𝑐𝑠 | = 1,

then it means that the current executing function is at depth 1, its caller is necessarily the main

entrypoint function. Return capabilities Ret(𝑏, 𝑒, 𝑎) make the overlay semantics return from a call

by deallocating the topmost frame, the addresses 𝑏, 𝑒, 𝑎 do not matter except for the full abstraction

proof which will be explained § 6.2. The regular capabilities (𝑝, ℓ, 𝑏, 𝑒, 𝑎) are now specifically for

accessing only the heap in the overlay semantics.

Call. The overlay semantics provide a new instruction call 𝑟 ®𝑟args which calls the function given

in the register 𝑟 , and passing the arguments in ®𝑟args . The operational semantics is given an additional

rule for executing calls as follows.

ExecCall

†𝜑.reg(pc) = (𝑝, ℓ, 𝑏, 𝑒, 𝑎) †𝑝 ∈ {rx, rwx, rwlx} † [𝑎, 𝑎 + |call 𝑟 ®𝑟args | [⊆ [𝑏, 𝑒 [
†𝜑.h([𝑎, 𝑎 + |call 𝑟 ®𝑟args | [) = [call0 𝑟 ®𝑟args; call1 𝑟 ®𝑟args; . . .] ¶∀𝑟, 𝑟 ∈ ®𝑟args, safe(𝜑.reg(𝑟))

§𝜑.reg(𝑟) = (e, ℓ ′, 𝑏 ′, 𝑒 ′, 𝑎′) ⋆𝜑.reg(𝑟stk) = Stk(𝑑, urwlx, 𝑏stk, 𝑒stk, 𝑎stk)
⋆𝑑 = |𝜑.𝑐𝑠 | ⋆ [𝑎, 𝑎stk + |actcode | + 1 + |®𝑟args | [⊆ [𝑏stk, 𝑒stk [

•∀𝑖, canBeStored(𝜑.reg(𝑟𝑖), 𝑎stk + 𝑖) 𝜑 ′ = (reg′, 𝜑 .h, stk′, (reg∗, stk∗) :: 𝜑.cs)
(Executable, 𝜑) → (Executable, 𝜑 ′)

where

• reg
′
is defined such that reg

′(pc) = (rx, ℓ ′, 𝑏 ′, 𝑒 ′, 𝑎′), reg′(𝑟stk) = Stk(𝑑 + 1, urwlx, 𝑎stk +
|actcode |, 𝑒stk, 𝑎stk + |actcode | + 1 + |®𝑟args |) and reg

′(𝑟 ′) = if 𝑟 ′ = 𝑟 then reg(𝑟) else 0;
• stk

′ = ∅[𝑎stk + |actcode | ↦→ Ret(. . .), . . .];

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 A.L. Georges, A. Trieu, and L. Birkedal

• reg
∗ = reg[pc ↦→ (𝑝, ℓ, 𝑏, 𝑒, 𝑎 + |call 𝑟 ®𝑟args |)];

• stk
∗ = stk[𝑎stk ↦→ . . . , . . . , 𝑎stk + |actcode | − 1 ↦→ . . .].

First, the overlay machine dynamically checks that the current pc contains a valid program

counter, pointing to the code pattern implementing call 𝑟 ®𝑟args (indicated with a
†
in ExecCall).

It then checks (¶) the parameters of the call are safe (i.e. no return capabilities, nor a capability

that can be used to overwrite the activation code of an active return capability, see [Georges et al.

2022, Appendix C] for a formal definition) and (§) the call target is an enter capability. (⋆) It then

checks that the provided capability in 𝑟stk is actually a capability for the current stack, with enough

range to store the activation code and parameters. The local state is stored on the stack, followed

by the activation record. (•) The overlay semantics requires that all of these can be legally stored

on the stack. The callee is given a fresh register state (all cleared except pc, 𝑟stk and 𝑟), and receives

a fresh stackframe with the return capability at the bottom, and all parameters above it. Finally, the

local state (reg∗, stk∗) of the caller is pushed on the call stack. If a condition is not satisfied, the

overlay semantics falls back on the rule ExecStep, and simply executes one instruction at a time.

The formal rule for call, denoted ExecCall has been formalized in Coq.

Return. A jump using a return capability is interpreted as a return.

Jjmp 𝑟K(reg, h, stk, cs) = (reg′, h, stk′, cs′) when
{
reg(𝑟) = Ret(𝑏, 𝑒, 𝑎)
cs = (reg′, stk′) :: cs′

The semantics of return capture temporal stack safety. The topmost stack frame stk is deallocated

and the local environment reg
′
and stk

′
is restored. By deallocating the topmost stack frame, we

capture that the caller loses any read access to its old content. This is in contrast with [Skorstengaard

et al. 2019b], where the stack frames stk and stk
′
are instead merged together, giving the caller

access to whatever was left on the stack.

Properties of the overlay semantics. ExecCall and jumping using a return capability are the only

way in the semantics to push or pop the call stack, it is thus obvious that WBCF is enforced by

the overlay semantics. As the topmost stack frame is entirely removed when returning, temporal

stack safety is also natively enforced by the semantics. Finally, a stack frame can only be accessed

using a corresponding Stk capability with the right depth. ExecCall is the only rule that creates

a Stk capability with an increasing depth and only provides it to the callee, a caller cannot thus

access to a callee’s stack frame. Conversely, a callee is only given access to its Stk capability and

parameters, it thus cannot access its caller’s local state, local state is also natively enforced by the

overlay semantics.

6.2 A Full Abstraction Theorem
In order to show that our new calling convention does enforce stack safety, we prove a full

abstraction theorem between the overlay semantics and the base capability machine. Full abstraction

states that two components are indistinguishable by other components in the overlay semantics if

and only if they are indistinguishable by other components in the base semantics. Informally, this

shows that adversarial contexts in the base capability machine are not stronger that those in the

overlay semantics. The theorem is stated as follows. We use blue for the overlay machine, and red
for the regular capability machine.

Theorem 6.1. For well-formed components comp
1
and comp

2
, we have

comp
1
≈ctxcomp

2
⇔ comp1≈ctxcomp2

The theorem states that contextual equivalences are preserved and reflected, it is proved using a

simple simulation argument. A forward simulation is defined as follows.

Definition 6.2 (Forward simulation). We say that ∼ is a forward simulation between programs 𝑝1
and 𝑝2 when the following holds.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:25

(1) Let 𝜙 and𝜓 be the initial states of 𝑝1 and 𝑝2, then 𝜙 ∼ 𝜓 .

(2) Let 𝜙 and 𝜓 such that 𝜙 ∼ 𝜓 , then if 𝜙 → 𝜙 ′
then there exists 𝜓 ′

such that 𝜓 →∗ 𝜓 ′
and

𝜙 ′ ∼ 𝜓 ′
.

(3) Let 𝜙 and𝜓 such that 𝜙 ∼ 𝜓 , then if 𝜙 is a final state of 𝑝1, then𝜓 is a final state of 𝑝2.

A forward simulation implies preservation of termination [Leroy 2009]:

Lemma 6.3. If there exists a forward simulation between programs 𝑝1 and 𝑝2, then 𝑝1⇓ ⇒ 𝑝2⇓.

Before proving Theorem 6.1, we first show the following lemma.

Lemma 6.4. For all well-formed closed programs (see [Georges et al. 2022] for a precise definition) P
in the overlay semantics, there exists a forward simulation between P and its counterpart P in the

base semantics.

Proof. The detailed proof can be found in the accompanying Coq development, we only provide

a proof sketch here. The crux of the proof is to build a relation ∼ and show it is a forward simulation.

We say that (reg, h, stk, cs) ∼ (reg,mem) when reg and reg contain related words in each

register. An integer is only related to itself, while a stack capability Stk(𝑑, 𝑝, 𝑏, 𝑒, 𝑎) is related to

a directed capability (𝑝, directed, 𝑏, 𝑒, 𝑎). Similarly, return capabilities Ret(𝑏, 𝑒, 𝑎) are related to

enter directed capabilities (e, directed, 𝑏, 𝑒, 𝑎) and regular capabilities (𝑝, ℓ, 𝑏, 𝑒, 𝑎) are related to

themselves. Furthermore, the heap ℎ, the current stack stk and saved stack frames in the call stack

cs must have disjoint domains, as well as have related words at corresponding addresses withmem.

When this relation is defined, it is relatively straightforward, though tedious, to show that it

is indeed a forward simulation. The simulation operates in a “lockstep” fashion, except for the

ExecCall and ExecReturn steps where one step in the overlay semantics is simulated by multiple

ones in the base semantics. □

We can now prove our full-abstraction theorem (Theorem 6.1).

Proof. By unfolding the definitions, we need to prove the following:

(∀C, C[comp
1
]⇓ ⇔ C[comp

2
]⇓) ⇔ (∀C,C[comp1]⇓ ⇔ C[comp2]⇓)

By combining Lemma 6.3 and Lemma 6.4, we know that for all closed programs 𝑝 , 𝑝⇓ =⇒ p⇓.
Furthermore, as the base capability machine semantics is deterministic, we can actually build a

backward simulation from the forward simulation [Leroy 2009]. We thus actually have that for all

closed programs 𝑝 , 𝑝⇓ ⇔ p⇓.
Without loss of generality, we can thus consider the ⇒ implication (the other direction is

similar). By symmetry it suffices once again to consider only the⇒ direction of (∀C,C[comp1]⇓ ⇔
C[comp2]⇓).
We prove this by following the proof structure shown on the left. Let C be a context such that

C[comp1]⇓, we need to prove that C[comp2]⇓, knowing that C[comp
1
]⇓ ⇔ C[comp

2
]⇓.

(1)

(2)

(3)

?

C[comp1]⇓ C[comp2]⇓

C[comp
1
]⇓ C[comp

2
]⇓ The steps described in the figure can then be proved as follows.

(1) We use the backward simulation to prove that C[comp
1
]⇓.

(2) By assumption, we have that C[comp
1
]⇓ ⇔ C[comp

2
]⇓, and

therefore C[comp
2
]⇓.

(3) We use the forward simulation to conclude that C[comp2]⇓.
□

7 RELATEDWORK
We now discuss some related work that has not already been discussed in the paper.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 A.L. Georges, A. Trieu, and L. Birkedal

In this paper we have emphasized temporal stack safety, but capabilities have also recently

been proposed in the CHERI project as a mechanism for ensuring temporal memory safety for the

heap. In particular, in CHERIvoke [Xia et al. 2019] and Cornucopia [Filardo et al. 2020] the authors

suggest to use capabilities to efficiently and securely reclaim memory managed by a dedicated

memory allocator using a garbage-collector-like approach. In contrast to our work, they do not

formally state nor prove the guarantees provided by their mechanism, and it would be interesting

to do that in future work.

We have already discussed the most closely related work on formalising capability safety. Other

related approaches include the work of Nienhuis et al. [2020] and Bauereiss et al. [2022], who

define a syntactic notion of capability safety as a monotonicity guarantee of reachable objects (the

machine does not create new capabilities out of thin air); in contrast to our approach, they do not

consider safety across calls to possibly adversarial code, so they only show that security properties

hold within a single component. On the other hand, they consider a capability machine model

with all of the instructions found on a real machine (Morello in the case of [Bauereiss et al. 2022])

whereas we consider a core capability machine model. Devriese et al. [2016] propose a semantic

approach to capturing capability safety for a high-level language with object capabilities using

logical relations; this approach was further expanded upon by Swasey et al. [2017], who showed

the robustness of several object capability patterns. Recently, El-Korashy et al. [2021] have studied

the formal security guarantees of PAC (pointers-as-capabilities) compilers for partial programs and

characterized them via a full abstraction result.

Full abstraction [Abadi 1999] is a well-known property in the field of secure compilation [Pa-

trignani et al. 2019] and has been used in recent works to characterize the security properties

provided by different capability machines. Our approach follows the one proposed by Skorstengaard

et al. [2019b] who use a fully abstract overlay semantics to define and show that their protection

mechanisms enforce WBCF and LSE. Their proof uses a complex cross-language logical relation and

is not mechanized, whereas we use a simpler simulation argument. Van Strydonck et al. [2021] also

use a simulation-based argument for a fully abstract compiler from a statically verified language to

an unverified language with support for linear capabilities. Likewise, Tsampas et al. [2019] also use

a simulation proof for proving full abstraction between an “ideal” semantics with native temporal

safety and an imperative language equipped with capabilities. It is interesting to note that their

higher-level semantics already assumes well-bracketed control-flow with automatic deallocation of

stackframes on return; we provably enforce that using directed capabilities.

While we use an overlay semantics to characterize the notion of stack safety our calling conven-

tion guarantees, Anderson et al. [2021] define stack safety as a trace property, expressed as the

conjunction of LSE and WBCF. Anderson et al. distinguish between the integrity of local state, and

the confidentiality of local state. Likewise, we develop a unary model to reason about the integrity

of specific examples, and a binary model to reason about confidentiality. Unlike Anderson et al., we

consider a machine with both a stack and a heap. Anderson et al. use their definition to validate the

stack safety micro-policies proposed by Roessler and DeHon [2018], who use a general-purpose

tagged architecture to design stack protection security policies. Unlike our capability-based calling

convention, their policies do not incur an overhead when passing stack objects, but require more

sophisticated tags, and a mechanism of lazy tagging to achieve the low overhead.

Tagged architectures have also been used to enforce more general properties such as information-

flow control [Azevedo de Amorim et al. 2014], secure compartmentalization [Abate et al. 2018],

among other micro-policies [Azevedo de Amorim et al. 2015]. However, micro-policies must be

expertly designed in order to leverage cache and be efficient.

In a different line of work, software-based fault isolation (SFI) aims to provide process-based

isolation by compartmentalizing (sandboxing) processes in different regions of the memory [Wahbe

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:27

et al. 1993]. Our calling convention provides similar guarantees despite a shared stack. Recently,

Kolosick et al. [2022] have used an overlay semantics to characterize sufficient conditions for which

so-called “heavyweight transitions” (context switching) can be safely replaced by “near zero cost

transitions” akin to regular function calls. They further show that WebAssembly code compiled by

a correct compiler would satisfy these conditions.

Finally, we remark that our unary and binary models are built on a large body of work on

characterizing security through logical relations. We use a logical approach [Dreyer et al. 2011,

2010b; Turon et al. 2013] to step-indexed Kripke logical relations [Ahmed 2004; Birkedal et al. 2011],

mechanized in the Coq implementation of Iris [Krebbers et al. 2017b]. We use private and public

transitions to characterise well-bracketed control flow [Dreyer et al. 2010a], and a new kind of

transition that we call temporal transitions to characterise the temporal aspect of stack safety.

8 CONCLUSION AND FUTUREWORK
We have demonstrated how directed capabilities can be used to enforce a strong degree of stack

safety, including local state encapsulation, well-bracketed control flow, and temporal stack safety,

with no stack clearing, and with only one additional bit. We have presented two new logical

relations to reason about the integrity and confidentiality of specific examples, and proved a full

abstraction result for an overlay semantics that defines our notion of stack safety. Finally, we

discussed interesting subtleties of stack safety properties in a capability machine with a stack and a

heap, and in the presence of stack objects crossing the boundary from caller to callee.

We have used contextual equivalence to formalize confidentiality, whereas Anderson et al. [2021]

and Azevedo de Amorim et al. [2018] intuitively link confidentiality to a kind of non-interference

property. We believe our calling convention based on directed capabilities also guarantees non-

interference and in future work, it would be interesting to show this formally. To that end, one

would probably have to extend the capability machine language with security labels.

We have shown how our capability machine can implement function calls, as found in higher-

level languages, in a secure manner. We believe it is easy to show that it can also implement

tail-calls securely and conjecture that it is also possible to implement non-standard control flow

such as C-style setjmp/longjmp efficiently and securely. Indeed, we may implement setjmp by
creating a Jmp capability pointing to some activation code, similarly to how call creates a return

capability. These capabilities can then be safely passed up the stack to callees. longjmp would then

be implemented by jumping to such a capability. Such an implemention is efficient as longjmp
is just a jump, and it is not necessary to unwind the stack. It is also safe in the sense that we

can guarantee temporal safety of a setjmp environment: a caller will not be able to longjmp to

a setjmp environment set up by one of its descendants (this is similar to how we ensure WBCF

and guarantee that a return capability cannot be smuggled away). Temporal confidentiality of

stack frames can still be enforced, and stack frames do not need to be scrubbed because directed

capabilities guarantee that a caller cannot read them. Previously proposed calling conventions for

capability machines either cannot provide such guarantees or would require careful unwinding or

extensive memory clearing.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for excellent comments and suggestions. This work was sup-

ported in part by a Villum Investigator grant (no. 25804), Center for Basic Research in Program

Verification (CPV), from the VILLUM Foundation. We would also like to thank Dominique De-

vriese, Thomas Van Strydonck, Amin Timany, Armaël Guéneau and Frank Piessens for invaluable

discussions and feedback.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:28 A.L. Georges, A. Trieu, and L. Birkedal

REFERENCES
Martín Abadi. 1999. Protection in Programming-Language Translations. In Secure Internet Programming, Security Issues for

Mobile and Distributed Objects. 19–34. https://doi.org/10.1007/3-540-48749-2_2

Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans, Guglielmo Fachini, Catalin Hritcu, Théo

Laurent, Benjamin C. Pierce, Marco Stronati, and Andrew Tolmach. 2018. When Good Components Go Bad: Formally

Secure Compilation Despite Dynamic Compromise. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. 1351–1368. https://doi.org/10.1145/

3243734.3243745

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton University.

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-dependent representation independence. In Proceedings of

the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,

January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 340–353. https://doi.org/10.1145/1480881.1480925

Sean Noble Anderson, Leonidas Lampropoulos, Roberto Blanco, Benjamin C. Pierce, and Andrew Tolmach. 2021. Security

Properties for Stack Safety. CoRR abs/2105.00417 (2021). arXiv:2105.00417 https://arxiv.org/abs/2105.00417

Arm. 2021. Morello project. Retrieved July 6, 2021 from https://www.morello-project.org/

Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Catalin Hritcu, David Pichardie, Benjamin C.

Pierce, Randy Pollack, and Andrew Tolmach. 2014. A verified information-flow architecture. In The 41st Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,

2014. 165–178. https://doi.org/10.1145/2535838.2535839

Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Catalin Hritcu, Benjamin C. Pierce, Antal Spector-Zabusky,

and Andrew Tolmach. 2015. Micro-Policies: Formally Verified, Tag-Based Security Monitors. In 2015 IEEE Symposium on

Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. 813–830. https://doi.org/10.1109/SP.2015.55

Arthur Azevedo de Amorim, Catalin Hritcu, and Benjamin C. Pierce. 2018. The Meaning of Memory Safety. In Principles of

Security and Trust - 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science),

Lujo Bauer and Ralf Küsters (Eds.), Vol. 10804. Springer, 79–105. https://doi.org/10.1007/978-3-319-89722-6_4

Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence Esswood, Ian Stark, Graeme Barnes,

Robert N. M. Watson, and Peter Sewell. 2022. Verified Security for the Morello Capability-enhanced Prototype Arm

Architecture. In Proceedings of the 31st European Symposium on Programming.

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, and Hongseok Yang. 2011. Step-

indexed Kripke models over recursive worlds. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM,

119–132. https://doi.org/10.1145/1926385.1926401

Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. 1994. Hardware Support for Fast Capability-Based Addressing.

In International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 319–327.

https://doi.org/10.1145/195473.195579

Chromium. 2020. Memory safety. Retrieved July 6, 2021 from https://www.chromium.org/Home/chromium-security/

memory-safety

Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for Multiprogrammed Computations. Commun. ACM

9, 3 (March 1966), 143–155. https://doi.org/10.1145/365230.365252

Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Capabilities with Logical Relations

and Effect Parametricity. In IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,

March 21-24, 2016. IEEE, 147–162. https://doi.org/10.1109/EuroSP.2016.22

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. LMCS 7, 2:16 (June 2011),

1–37.

Derek Dreyer, Georg Neis, and Lars Birkedal. 2010a. The impact of higher-order state and control effects on local relational

reasoning. In Proceeding of the 15th ACM SIGPLAN international conference on Functional programming, ICFP 2010,

Baltimore, Maryland, USA, September 27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.). ACM, 143–156. https:

//doi.org/10.1145/1863543.1863566

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010b. A relational modal logic for higher-order stateful

ADTs. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,

Madrid, Spain, January 17-23, 2010. 185–198. https://doi.org/10.1145/1706299.1706323

Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese, Deepak Garg, and Frank Piessens. 2021.

CapablePtrs: Securely Compiling Partial Programs Using the Pointers-as-Capabilities Principle. In 2021 IEEE 34th

Computer Security Foundations Symposium (CSF). IEEE Computer Society, Los Alamitos, CA, USA, 421–436. https:

//doi.org/10.1109/CSF51468.2021.00036

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/1480881.1480925
https://arxiv.org/abs/2105.00417
https://arxiv.org/abs/2105.00417
https://www.morello-project.org/
https://doi.org/10.1145/2535838.2535839
https://doi.org/10.1109/SP.2015.55
https://doi.org/10.1007/978-3-319-89722-6_4
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/195473.195579
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://doi.org/10.1145/365230.365252
https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.1109/CSF51468.2021.00036
https://doi.org/10.1109/CSF51468.2021.00036

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities 1:29

Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan

Xia, Edward Tomasz Napierala, Alexander Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan Gudka,

Alexandre Joannou, A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael Roe, Peter Sewell, Stacey

Son, Timothy M. Jones, Simon W. Moore, Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia: Temporal

Safety for CHERI Heaps. In IEEE Symposium on Security and Privacy. IEEE.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: AMechanised Relational Logic for Fine-Grained Concurrency.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,

2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 442–451. https://doi.org/10.1145/3209108.3209174

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique

Devriese, and Lars Birkedal. 2021. Efficient and provable local capability revocation using uninitialized capabilities. Proc.

ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434287

Aïna Linn Georges, Alix Trieu, and Lars Birkedal. 2022. Le Temps des Cerises: Efficient Temporal Stack Safety on Capability

Machines using Directed Capabilities. Technical Report. https://cs.au.dk/~ageorges/publications_pdfs/monotone-

technical.pdf

Nicolas Joly, Saif ElSherei, and Saar Amar. 2020. Security Analysis of CHERI ISA. Retrieved July 6, 2021 from https://msrc-

blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. 256–269.

https://doi.org/10.1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.

637–650. https://doi.org/10.1145/2676726.2676980

Matthew Kolosick, Shravan Narayan, Conrad Watt, Michael LeMay, Deepak Garg, Ranjit Jhala, and Deian Stefan. 2022.

IsolationWithout Taxation: Near Zero Cost Transitions for SFI. InACM SIGPLAN Symposium on Principles of Programming

Languages (POPL). ACM.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: a general, extensible modal framework for interactive proofs in separation logic. PACMPL

2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The Essence

of Higher-Order Concurrent Separation Logic. In Programming Languages and Systems - 26th European Symposium on

Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017, Proceedings. 696–723. https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in higher-order concurrent separation logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. https://doi.org/10.1145/3009837.

3009855

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A relational model of types-and-effects in higher-

order concurrent separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 218–231.

https://doi.org/10.1145/3009837.3009877

Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (2009), 363–446. https://doi.org/10.

1007/s10817-009-9155-4

Henry M. Levy. 1984. Capability-Based Computer Systems. Digital Press. https://homes.cs.washington.edu/~levy/capabook/

Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony Fox, Michael Roe, Brian Campbell, Matthew Naylor,

Robert M. Norton, Simon W. Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2020. Rigorous

engineering for hardware security: Formal modelling and proof in the CHERI design and implementation process. In

Proceedings of the 41st IEEE Symposium on Security and Privacy (SP).

Marco Patrignani, Amal Ahmed, andDave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of Fully Abstract

Compilation and RelatedWork. ACMComput. Surv. 51, 6, Article 125 (Feb. 2019), 36 pages. https://doi.org/10.1145/3280984

Nick Roessler and André DeHon. 2018. Protecting the Stack with Metadata Policies and Tagged Hardware. In 2018 IEEE

Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer

Society, 478–495. https://doi.org/10.1109/SP.2018.00066

Lau Skorstengaard. 2019. Formal Reasoning about Capability Machines. Ph.D. Dissertation. Aarhus University.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1145/3434287
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf
https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://homes.cs.washington.edu/~levy/capabook/
https://doi.org/10.1145/3280984
https://doi.org/10.1109/SP.2018.00066

1:30 A.L. Georges, A. Trieu, and L. Birkedal

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2018. Reasoning About a Machine with Local Capabilities -

Provably Safe Stack and Return Pointer Management. In Programming Languages and Systems - 27th European Symposium

on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 475–501. https://doi.org/10.1007/978-3-319-89884-1_17

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019a. Reasoning about a Machine with Local Capabilities:

Provably Safe Stack and Return Pointer Management. ACM Transactions on Programming Languages and Systems 42, 1

(Dec. 2019), 5:1–5:53. https://doi.org/10.1145/3363519

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019b. StkTokens: Enforcing Well-Bracketed Control Flow

and Stack Encapsulation Using Linear Capabilities. Proc. ACM Program. Lang. 3, POPL, Article 19 (Jan. 2019), 28 pages.

https://doi.org/10.1145/3290332

Eijiro Sumii and Benjamin C. Pierce. 2007. A bisimulation for type abstraction and recursion. J. ACM 54, 5 (2007), 26.

https://doi.org/10.1145/1284320.1284325

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object Capability Patterns.

In OOPSLA. ACM. https://people.mpi-sws.org/~swasey/papers/ocpl/ocpl-20170418.pdf

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War in Memory. In 2013 IEEE Symposium on

Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. 48–62. https://doi.org/10.1109/SP.2013.13

Gavin Thomas. 2019. A proactive approach to more secure code. Retrieved July 6, 2021 from https://msrc-blog.microsoft.

com/2019/07/16/a-proactive-approach-to-more-secure-code/

Stelios Tsampas, Dominique Devriese, and Frank Piessens. 2019. Temporal Safety for Stack Allocated Memory on Capability

Machines. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. 243–255.

https://doi.org/10.1109/CSF.2019.00024

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for higher-

order concurrency. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA -

September 25 - 27, 2013. 377–390. https://doi.org/10.1145/2500365.2500600

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2021. Linear capabilities for fully abstract compilation of

separation-logic-verified code. J. Funct. Program. 31 (2021), e6. https://doi.org/10.1017/S0956796821000022

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993. Efficient Software-Based Fault Isolation. In

Proceedings of the Fourteenth ACM Symposium on Operating System Principles, SOSP 1993, The Grove Park Inn and Country

Club, Asheville, North Carolina, USA, December 5-8, 1993. 203–216. https://doi.org/10.1145/168619.168635

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary, Jonathan Anderson, John

Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley Filardo, Richard

Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan

Nienhuis, Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. 2020. Capability

Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8). Technical Report UCAM-CL-TR-951.

University of Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-951

R. N. M.Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J.

Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for Scalable

Software Compartmentalization. In IEEE Symposium on Security and Privacy. 20–37. https://doi.org/10.1109/SP.2015.9

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony C. J. Fox, Robert M. Norton, David Chisnall, Brooks Davis,

Khilan Gudka, Nathaniel Wesley Filardo, A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Watson,

and Simon W. Moore. 2019. CHERI Concentrate: Practical Compressed Capabilities. IEEE Trans. Computers 68, 10 (2019),

1455–1469. https://doi.org/10.1109/TC.2019.2914037

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael Roe, Alexander Richardson, Peter Rugg,

Peter G. Neumann, Simon W. Moore, Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke: Characterising

Pointer Revocation Using CHERI Capabilities for Temporal Memory Safety. In IEEE/ACM International Symposium on

Microarchitecture. ACM. https://doi.org/10.1145/3352460.3358288

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-319-89884-1_17
https://doi.org/10.1145/3363519
https://doi.org/10.1145/3290332
https://doi.org/10.1145/1284320.1284325
https://people.mpi-sws.org/~swasey/papers/ocpl/ocpl-20170418.pdf
https://doi.org/10.1109/SP.2013.13
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://doi.org/10.1109/CSF.2019.00024
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1017/S0956796821000022
https://doi.org/10.1145/168619.168635
https://doi.org/10.48456/tr-951
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/3352460.3358288

	Abstract
	1 Introduction
	2 On the Stack Safety of Capability Machines
	2.1 A Family of Stack Safety Properties
	2.2 Two Subtleties of Stack Safety
	2.3 Enforcing Stack Safety in Capability Machines

	3 Capability Machine: Operational Semantics and Calling Convention
	3.1 A Capability Machine with Local and Uninitialized Capabilities
	3.2 A Secure Calling Convention using Local and Uninitialized Capabilities
	3.3 Directed Capabilities
	3.4 A New Calling Convention using Directed Capabilities
	3.5 Discussion

	4 A Unary Model for Integrity
	4.1 A New Kripke World
	4.2 A Unary Logical Relation
	4.3 Examples

	5 A Binary Model For Confidentiality
	6 Characterizing security using a fully abstract overlay semantics
	6.1 Overlay semantics
	6.2 A Full Abstraction Theorem

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

