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One successful approach to verifying programs is re�nement, where one establishes that the implementation

(e.g., in C) behaves as speci�ed in its mathematical speci�cation. In this approach, the end result (a whole

implementation re�nes a whole speci�cation) is often established via composing multiple “small” re�nements.

In this paper, we focus on the task of composing re�nements. Our key observation is a novel correspondence

between the task of composing re�nements and the task of proving entailments in modern separation logic.

This correspondence is useful. First, it unlocks tools and abstract constructs developed for separation logic,

greatly streamlining the composition proof. Second, it uncovers a fundamentally new veri�cation strategy.

We address the key challenge in establishing the correspondence with a novel use of angelic non-determinism.

Guided by the correspondence, we develop RCL (Re�nement Composition Logic), a logic dedicated to

composing re�nements. All our results are formalized in Coq.
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1 Introduction

One prominent approach in formal veri�cation is re�nement [Back and Wright 2012; Choi et al.
2017; Dijkstra 1972; Liang and Feng 2016; Wirth 1971], which is used to specify the behavior of a
complex and e�cient implementation with a much simpler mathematical formulation. Re�nements
(usually) have a rather simple de�nition—e.g., a mere set inclusion saying that any observable trace
of the implementation can also appear in the speci�cation—and this makes re�nement an excellent
end result of the veri�cation, providing results understandable to a wide audience.
Establishing such an end result is often non-trivial due to both the size of the system and the

gap between the implementation and its abstract, mathematical speci�cation: e.g., a hypervisor
written in C spans several thousand lines, and exposes low-level programming features of C (such
as bitwise manipulations) [Li et al. 2021].
A common approach in establishing such an end result is by decomposing it down to multiple

pieces of “small” re�nements [Gu et al. 2015; Koenig and Shao 2020]. Speci�cally, the notion of
re�nement often comes with a calculus o�ering axioms like horizontal and vertical compositionality.
And, with these, the end result is established in amodule-wise (i.e., eachmodule is separately veri�ed)
and gradual (i.e., such veri�cation is accomplished by multiple stepwise re�nements) manner.
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Symbols in Separation Logic
(constitute RCL in §5)

(I) Unlocks tools developed for Separation Logic

(II) Discovers new veri�cation strategies

Fig. 1. Contributions of this paper.

In this method, the veri�cation task is twofold:

• Establishing these “small” re�nements, and
• Composing them—using the axioms of calculus—to derive the end result.

In this paper, we focus on the latter and make two main contributions: (I) and (II).
(I) First, we observe that the task of composing re�nements could be understood in terms of

the assertion language of modern separation logic. While there has been a plethora of work on
utilizing separation logic for the former task (namely, relational separation logic) [Frumin et al.
2018, 2021; Gäher et al. 2022; Turon et al. 2013; Yang 2007], we are the �rst to use separation logic
for the latter task, to the best of our knowledge. Based on the observation, we soundly lift these
“small re�nements” into logical formulae, and axioms for composing re�nements into logical rules

(of separation logic).
This lifting is practically useful in that it streamlines the composition proof. Most importantly,

it unlocks the use of a mature tool [Krebbers et al. 2017] in separation logic to automate tedious
steps in the composition proof. Moreover, the resulting logic enjoys a richer structure (esp., having
magic wands) than primitive calculus, adding more �exibility in composition proof. Finally, derived
constructs developed in separation logic could further streamline the composition proof.
(II) Next, we take one step further and ask the question in reverse:

Can we interpret all symbols in separation logic in terms of re�nement composition?

Speci�cally, in this paper, we focus on interpreting all symbols of a non-step-indexed version
of Iris base logic. Iris base logic, which is at the core of the Iris program logic, suits our purpose
well since it comprises just a few primitive symbols and not the programming-language-speci�c
ones (like the points-to connective). Among these symbols in Iris base logic, the lifting in (I)

already covers all the symbols but �, the persistence modality (we henceforth use magenta color
for emphasis). Thus, the question is rephrased as:

Can we �nd an interpretation of � in terms of re�nement composition?

Unexpectedly, this question guided us to a novel observation that is not only useful for composing
re�nements but also enables fundamentally new—which were not possible before—strategies for
formulating “small” re�nements.

And here comes our second contribution. While all the existing re�nement frameworks as-is do
not admit persistence modality and its rules, (i) we �nd a minimal, natural, and elegant extension
of the underlying operational semantics of existing re�nement frameworks that allows us to de�ne
persistence modality in the world of re�nement composition. Enabled by such an extension, (ii) we
�nd a novel interpretation of persistence modality in re�nement composition and thus establish a
full correspondence between the task of composing re�nements and the task of proving logical
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entailment in Iris base logic. Finally, using the persistence modality, (iii) we discover fundamentally
new veri�cation and composition strategies in re�nement.

All in all, in this paper, we introduce RCL (Re�nement Composition Logic), a radically new
approach to stating and composing re�nements. RCL is not tied to a speci�c re�nement framework;
it could be instantiated with any notion of module and re�nement provided that they satisfy the
axioms of what we dubbedMRA (Module and Re�nement Algebra). These axioms comprise
standard axioms in re�nement frameworks and a few more to justify persistence modality.

The overall structure of our contribution is pictorially illustrated in Fig. 1, where the upper half
concerns the contribution (I) and the lower half, (II).

1.1 Contributions

We discover an unexpected correspondence between modern separation logic assertions and this
exact problem of composing re�nements. Guided by the correspondence, we develop RCL and
present its usefulness. Speci�cally, this paper makes the following contributions.

• We give a novel interpretation of logical symbols (§3) and derived constructs (§7) of the Iris base
logic in the re�nement setting and show how it streamlines the proof of re�nement composition.
• We show that existing module semantics in re�nement frameworks can be naturally and elegantly
extended using angelic non-determinism to satisfy the axioms of MRA (§4).
• We de�ne MRA, which comprises completely standard axioms in re�nement frameworks plus a
new operator—revealed by the correspondence—called “core” (|− |) and its properties (§5 and §6).
• We derive RCL for any given MRA (§5). Doing so involves choosing a novel quotient set which
might be independently useful in Iris (§6).
• We give one instance of MRA by extending an existing module system by Song et al. [2023] (§8).

The results in this paper are fully formalized in the Coq proof assistant [Song and Lee 2024].

2 Background

In this section, we cover some essential background on modules and re�nements.

Module. The most basic element in re�nement frameworks is a notion of module. Though the
exact formulation di�ers by framework, a module is usually a set of function de�nitions given as a
semantic object (e.g., state transition system) that is not bound to a syntax of a speci�c programming
language [Beringer et al. 2014; Song et al. 2019; Stewart et al. 2015]. Note that, in this setting, the
state (e.g., memory) appears explicit in the argument.

Modern re�nement frameworks often come with an additional notion of private state (or, local
state) [Gu et al. 2015; Koenig and Shao 2020; Sammler et al. 2023; Song et al. 2023]. In this setting,
a module is a pair of initial value for the private state and a set of function de�nitions who can
access its own private state but not others’. Such private states do not appear in the implementation
modules written with programming languages; they appear only in the mathematical speci�cations
for the purpose of giving a strong, comprehensible speci�cation to the user.

Then, there is a linking operator between modules, ⊕, (taking the product of the private states and
disjoint union of the functions) and a notion of re�nement, ⊑, satisfying compositional properties
shown in Fig. 2. The best way to understand re�nement is by looking at a speci�c instance.

Re�nement. Contextual re�nement (⊑ctx) is perhaps the most well-known such re�nement. It is
based on the notion of trace and behavior, where a trace is a sequence of visible events and behavior
is a set of traces. With this, contextual re�nement between ) and ( is de�ned as follows:

) ⊑ctx ( ≜ ∀�CG . Beh(�CG ⊕ ) ) ⊆ Beh(�CG ⊕ ()
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)Fct

def f(x: N): N ≡

if x then x * f(x - 1) else 1

)Main

def main(): Z ≡ let a := f(3) in

let b := f(4) in a + b

(Fct

def f(x: N): N ≡ x!

(Main

def main(): Z ≡ 30

ref-refl

" ⊑ "

ref-vcomp

) ⊑ " " ⊑ (

) ⊑ (

ref-hcomp

)1 ⊑ (1 )2 ⊑ (2

)1 ⊕ )2 ⊑ (1 ⊕ (2

Fig. 2. An example showing refinement-based verification (above) and common axioms of refinements (below).

where �CG is a context module and Beh(") is the behavior of a module " . This set inclusion
ensures the following property,

1D6 ∉ Beh(�CG ⊕ (Hyp) =⇒ 1D6 ∉ Beh(�CG ⊕ )Hyp)

saying that: to guarantee the absence of bugs in the actual implementation, it su�ces to check the
source, which is exactly what clients expect. Also, it is easy to check that such a de�nition satis�es
properties in Fig. 2 (assuming the identity element ∅ for ⊕).

Re�nement is particularly suitable for stating the speci�cation of e.g., an operating system or a
hypervisor [Gu et al. 2016]. The end result in a hypervisor veri�cation, )Hyp ⊑ctx (Hyp, says that
the behavior of )Hyp linked with arbitrary guest operating systems (�CG) re�nes those of (Hyp.
Moreover, (Hyp keeps all the critical data in its private state, not the shared memory; this in turn
make it crystal clear that (Hyp operates as expected even in the presence of malicious guests.

The Essence of Re�nement-Based Program Veri�cation. Fig. 2 presents, with a contrived
example, the essence of re�nement-based program veri�cation. At the top, we have an implementa-
tion of the whole system comprising two modules, )Fct and )Main () stands for “target”). A module
)Fct is a simple library that o�ers a single method, f(x), which computes the factorial of x via
recursion and returns the result. A module )Main is a client that calls f() twice with arguments 3
and 4, computes the sum of the results, and returns it.
In the middle of Fig. 2, we have the abstract speci�cation of the system (again) comprising

two modules, (Fct and (Main (( stands for “source” or “speci�cation”). A speci�cation module (Fct
simpli�es the recursive computation in )Fct to x!, using the factorial function in mathematics.
(Main replaces the return value by a constant 30. Then, one could establish the end result (i.e.,
)Fct ⊕ )Main ⊑ (Main) by verifying and composing the following small (modular) re�nements:

i : )Fct ⊑ (Fct ii : (Fct ⊕ )Main ⊑ (Fct ⊕ (Main

In i, one veri�es that the library implementation meets its speci�cation. In ii, one similarly veri�es
that the client implementation meets its speci�cation, but this time leveraging the speci�cation of
the library: (Fct appears explicit on the re�nement. Thanks to the simpli�cation made by i, verifying
ii is straightforward. Finally, using the axioms in Fig. 2, we compose i-ii and get the end result:

)Fct ⊕ )Main ⊑ (Fct ⊕ )Main ⊑ (Fct ⊕ (Main

where we �rst apply i (together with ref-hcomp and ref-refl), and then apply ii. These successive
applications of re�nements (i.e., gradual veri�cation) is allowed by ref-vcomp. These axioms we
used are common to re�nement frameworks, where ref-vcomp and ref-hcomp are often called
vertical and horizontal compositionality, respectively.
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Formulating small re�nements is non-trivial. Before we move on, we answer a commonly
asked question at this point. Some astute readers have wondered if we can make the composition
of re�nements completely straightforward by breaking down these small re�nements further:

)Fct ⊑ ... ⊑ (Fct )Main ⊑ ... ⊑ (Main

)Fct ⊕ )Main ⊑ (Fct ⊕ (Main

If such a strategy works, its composition is completely trivial and would obviate any need for an
advanced calculus or logic like RCL for composing re�nements.
However, it turns out that the above approach does not work! The issue is that )Main ⊑ (Main

actually does not hold because such a statement would imply a false statement

EFct ⊕ )Main ⊑ EFct ⊕ (Main (via ref-hcomp)

where EFct is completely broken in that the body of f() always renders unde�ned behavior. Unde-
�ned behavior (shortened as UB) intuitively stands for an error and is formally de�ned as a set of
all traces. Then, in the above re�nement, the target renders UB (since )Main calls f()), while the
source does not (since (Main does not call f()); hence, false.

3 A Tour of RCL

In this section, we give a brief tour to our main contributions: (I) in §3.1, and (II) in §3.2.

3.1 (I) Interpreting Refinement Composition with Symbols in Separation Logic

In this subsection, we will see what it means to understand re�nement composition in terms of
separation logic and how it could be useful in streamlining composition proof (discussed further
in §7). To see this, consider a similar veri�cation scenario with three modules where we have the
following small re�nements (i-iii) and the end result (goal):

i : )� ⊑ (�
ii : (� ⊕ )� ⊑ (� ⊕ (�
iii : (� ⊕ )� ⊑ (� ⊕ (�

goal : )� ⊕ )� ⊕ )� ⊑ (� ⊕ (� ⊕ (�

Composing the veri�cation conditions i-iii to form the end result is conceptually straightforward,
but actually comprises some tedious steps. To begin with, let us take a look at additional common
axioms in re�nement frameworks, shown at the top of Fig. 3. Here, ref-comm and ref-assoc states
commutativity and associativity, and ref-assocr is derived from these two.
Then, the proof script for proving the goal in Coq proof assistant is shown on the left of the

�gure. It utilizes the setoid mechanism to automatically discharge many of the tedious steps, but
there are still a few.

In this proof, lines L1-L3 apply the re�nements i-iii each. After L2, our business with (� is over,
and we would like to remove it from both the left-hand side and the right-hand side of the goal.
While conceptually straightforward, it requires multiple tedious applications of various axioms.
Here, we use ref-hcomp (along with ref-refl) to remove (� , but for this, we need to use a series of
ref-comm, ref-assoc, and ref-assocr before and after to align the modules properly. What is worse
is that we often need to manually specify where to apply such axioms (the magenta colored part).

Basics of RCL. In RCL, we have a much more streamlined proof shown on the right of Fig. 3.
This is built on top of the following key observation in RCL. We lift the notion of re�nements into
logical formulae and the primitive axioms into logical rules of separation logic assertion language.
To begin with, the statement ) ⊑ ( is expressed in RCL as follows:

) ⊢ ¤|⇛ (
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ref-comm

"1 ⊕ "2 ⊑ "2 ⊕ "1

ref-assoc

"1 ⊕ ("2 ⊕ "3) ⊑ "1 ⊕ "2 ⊕ "3

ref-assocr

"1 ⊕ "2 ⊕ "3 ⊑ "1 ⊕ ("2 ⊕ "3)

(* )� ⊕ )� ⊕ )� ⊑ (� ⊕ (� ⊕ (� *)

L1: rewrite i.

(* (� ⊕ )� ⊕ )� ⊑ (� ⊕ (� ⊕ (� *)

L2: rewrite ii.

(* (� ⊕ (� ⊕ )� ⊑ (� ⊕ (� ⊕ (� *)

rewrite ref-comm with ("2 := )�).

rewrite <- ref-comm with ("1 := (�).

rewrite ref-assoc. rewrite <- ref-assocr.

apply ref-hcomp; [|apply ref-refl].

(* )� ⊕ (� ⊑ (� ⊕ (� *)

L3: rewrite ref-comm with ("2 := (�).

rewrite <- ref-comm with ("2 := (�).

(* (� ⊕ )� ⊑ (� ⊕ (� *)

rewrite iii. apply ref-refl.

(* )� ∗ )� ∗ )� ⊢ ¤|⇛( (� ∗ (� ∗ (� ) *)

R1: iDestruct (i with [$]) as >?.

(* (� ∗ )� ∗ )� ⊢ ¤|⇛( (� ∗ (� ∗ (� ) *)

R2: iDestruct (ii with [$]) as >[? $].

(* )� ∗ (� ⊢ ¤|⇛( (� ∗ (� ) *)

R3: iDestruct (iii with [$]) as $.

Fig. 3. Additional common axioms for shu�ling modules (top), usual composition proof with these axioms

(le�), and the same proof in RCL using IPM (right).

This logical formula uses three symbols, which we only give some intuition here (the full de�nitions

and rules will be given in §5). First, ) speci�es a singleton set where the only element is the
module ) . Second, the logical entailment % ⊢ & means that % is a subset of & . Finally, the re�nes
modality ¤|⇛% speci�es a set of modules that re�ne the module speci�ed by % . With these intuitions,

) ⊢ ¤|⇛ ( is translated into {) } ⊆ {" | " ⊑ (}, which in turn means ) ⊑ ( .

Next, we de�ne the separating conjunction (∗) to satisfy )1 ∗ )2 ≡ )1 ⊕ )2 ; lifting the notion
of module linking (⊕) into the logical world. Separating conjunction is commutative and associative,
meaning that � ∗ � ≡ � ∗� and � ∗ (� ∗�) ≡ � ∗ � ∗� .

With these, the original “small” re�nements and the end result is rephrased as follows:

i : )� ⊢ ¤|⇛ (�
ii : (� ∗ )� ⊢ ¤|⇛( (� ∗ (� )

iii : (� ∗ )� ⊢ ¤|⇛( (� ∗ (� )

goal : )� ∗ )� ∗ )� ⊢ ¤|⇛( (� ∗ (� ∗ (� )

Same proof in RCL. Nowwe explain the proof script on the right in Fig. 3. The proof here utilizes
an existing well-polished tool called Iris Proof Mode (IPM) [Krebbers et al. 2017] for proving logical
entailments in separation logic. Among many other features, IPM excels at automatic applications
of the frame rule and commutativity/associativity.

As before, the lines R1-R3 apply the re�nements i-iii each, and the comments show the current
goal at each point. While the proof script may seem cryptic—and we do not intend to explain them
in detail in this paper—the way the proof goal changes should be easy to follow.

The point here is twofold.
First, IPM’s automatic applications of frame rule replace manual applications of ref-hcomp (along

with ref-refl). Note the use of [? $] at the end of R2. These symbols indicate whether each
conjunct of the right-hand-side of ii should be framed away or remain in the proof: ? means it
should remain, and $ means it should be framed away. Therefore, in R2, (� remains in the proof
and (� is framed away. IPM automatically applies all the needed ref-hcomp and ref-refl (which
could be multiple in general) to achieve this action.

Second, IPM’s automatic applications of commutativity and associativity completely obviate the
need for manual applications of ref-comm, ref-assoc, and ref-assocr. To see this, take a look at R3.
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)Suc

def succ(x: Z): Z ≡

x + 1

)Put

def put(x: Z): Z ≡

print(x); x

)Rpt

def rpt(p: P,n: N,x: Z): Z ≡

match n with

| 0 ⇒ x

| S m ⇒

let y := *p(x) in

rpt(p, m, y)

(Rpt 5= 5

def rpt(p: P,n: N,x: Z): Z ≡

assume(p == 5=);

(5 n x)

)Main

def main(): Z ≡

let a := rpt(succ,1,1) in

rpt(put,a,a); 0

"Main

def main(): Z ≡

rpt(put,2,2); 0

(Main

def main(): Z ≡

print(2); print(2); 0

Fig. 4. An example using function pointers.

After applying ii in R2, the order of modules in the premise is shu�ed ()� appears before (�). In L3,
we needed to apply ref-comm and align the modules before we apply iii. In R3, we directly apply iii:
IPM automatically inserts all the necessary ref-comm, ref-assoc, and ref-assocr to align the goal.

To wrap up, in this subsection, we have seen how we interpret re�nements in terms of separation
logic formulae and why it is bene�cial (unlocking the use of tools developed for separation logic).

3.2 (II) New Verification Strategies Revealed by the Correspondence

In this subsection, we will investigate a veri�cation strategy newly envisioned by the correspon-
dence. To see this, consider an example shown in Fig. 4. The module )Rpt has a single function
rpt, which is a well-known “repeat” function: it takes a function pointer p, a natural number n,
and an integer x as an argument, and applies the function pointed to by p to the argument x for n
times. For example, )Rpt computes G + = when the argument p is succ. Note that, following recent
literature [Gäher et al. 2022; Wang et al. 2022], we use string literals as function pointers.

The speci�cation of )Rpt could be given as (Rpt 5= 5 . Note that this module is parameterized by a
function name 5= and a body 5 : the spec (Rpt 5= 5 is intended to serve only the function pointer for
5=. The body of (Rpt 5= 5 �rst checks, with the assume instruction, if the argument p is a function
pointer for 5=. If the condition is not met, it directly renders UB, which means that the caller is
calling rpt in an unintended way. If the condition is met, assume does nothing and proceed with
the rest of the body, i.e., returning 5 n x. The operator (−)= is a semantic iterator, which simpli�es
the manual recursive call in )Rpt.
With this speci�cation, similar to ii above, the veri�cation of Rpt would be as follows:

5= ↦→ 5 ⊕ )Rpt ⊑ 5= ↦→ 5 ⊕ (Rpt 5= 5 ⊑ (Rpt 5= 5 (verif-rpt)

for any given 5= and 5 . Here, 5= ↦→ 5 denotes a module with only one function with name 5= and
body 5 . The �rst re�nement holds because: if p is equal to 5=, both sides essentially carry out the
same computation, and if p is not equal to 5=, the source renders UB. Next, in this example, we will
never be using the module 5= ↦→ 5 again, so we drop it for simplicity in the second re�nement. The
second re�nement holds trivially because when a function 5= is invoked, the source may render
UB—because the de�nition is missing—while the target does not (this is discussed further in §4).
On one hand, this result is good: module Rpt is veri�ed modularly (independent of the client)

and it can be used by any client by instantiating 5= and 5 as they wish. On the other hand, this
result is bad: such a re�nement could not serve multiple clients at the same time.
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To see this clearly, consider a Main module given at the bottom of Fig. 4 where we wish to
establish the following whole-program re�nement as an end result:

()Suc ⊕ )Put) ⊕ )Rpt ⊕ )Main ⊑ (Main

Since the set of observable behaviors of both sides exactly coincide, this re�nement holds. However,
establishing such a result in a modular and gradual way, using verif-rpt, is tricky.

()Suc⊕)Put) ⊕)Rpt⊕)Main ⊑ )Put⊕ ((Rpt succ _) ⊕)Main ⊑ )Put⊕ ((Rpt succ _) ⊕"Main ̸⊑ (Main (○)

We could �rst apply verif-rpt with succ and its body (abbreviated as _). Then, using this, we can
easily abstract )Main into "Main where "Main has its �rst call to rpt inlined. However, we have
arrived at a dead end now: the resulting program cannot re�ne our end goal anymore! The reason
is simple: executing )Put ⊕ ((Rpt succ _) ⊕ "Main results in UB. Note that ((Rpt succ _) serves only
the single client, succ, and if it gets called with a function pointer other than succ it triggers UB.
This illustrates why it is challenging to verify Fig. 4 in a modular way using the basic notions

of re�nement. While it would be possible to verify Fig. 4 if we compromise some modularity—i.e.,
we could verify globally as follows: ()Suc ⊕ )Put) ⊕ )Rpt ⊑ (RptSucPut where (RptSucPut serves all the
clients—this is clearly less ideal.

The new component: persistence modality. Our solution to this problem is revealed in the
e�ort to establish the full correspondence between the Iris base logic and the re�nements. In
particular, � (persistence) modality, which �nds a novel interpretation in the re�nement setting
in this paper, is the key to our solution.
In Iris base logic, the rules for � are as follows. We have � % ⊢ % , meaning that � % behaves

like % , but it has an additional property. That is, we have � % ⊢ � % ∗ � % , meaning that � % is
duplicable. Finally, as usual in all modalities, � is monotone: i.e., % ⊢ & =⇒ � % ⊢ �& holds.

In RCL, we adopt � modality with exactly the same structural rules. For expository purposes, we
postpone its semantics in RCL and why such semantics justi�es the above rules in the re�nement

setting until §4. Here, we proceed assuming that )Rpt ⊢ � )Rpt holds.

Repairing composition proof in RCL. Now we see how we verify Fig. 4 modularly in RCL.
The basic strategy is the same as before (○), but this time, we utilize � modality to �x the proof.
We begin with enhancing verif-rpt as follows:

)Rpt ⊢ �'�� '�� ≜ (∀5=, 5 . 5= ↦→ 5 −∗ ¤|⇛ (Rpt 5= 5 ) (verif-rpt-rcl)

The symbols here (∀,−∗) obey the same rule as in standard separation logic. To get verif-rpt-rcl,

we begin with lifting verif-rpt into the logical form: )Rpt ⊢ '�� . Then, assuming )Rpt ⊢ � )Rpt ,

verif-rpt-rcl follows directly from the monotonicity of � modality: )Rpt ⊢ � )Rpt ⊢ �'�� .

Now, we prove the following four “small re�nements”. We verify each clientmodularly as follows:

)Suc ∗�'�� ⊢ )Suc ∗ '�� ⊢ ¤|⇛ (Rpt succ _ )Put ∗�'�� ⊢ )Put ∗ '�� ⊢ ¤|⇛ (Rpt put _

Also, for the Main module, we prove the following two gradual re�nements:

(Rpt succ _ ∗ )Main ⊢ ¤|⇛ "Main (Rpt put _ ∗ "Main ⊢ ¤|⇛ (Main

Recall that ) ⊢ ¤|⇛ ( equals ) ⊑ ( . It is easy to check that these corresponding re�nements hold.
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Finally, we compose all the entailments (verif-rpt-rcl and four “small re�nements”) and get the
end result as follows (we omit some intermediate steps automatically handled by IPM, especially
the elimination of ¤|⇛modalities; the rules will be articulated in §5):

)Suc ∗ )Put ∗ )Rpt ∗ )Main ⊢ )Suc ∗ )Put ∗�'�� ∗ )Main

⊢ ( )Suc ∗�'�� ) ∗ ( )Put ∗�'�� ) ∗ )Main (1)

⊢ ¤|⇛ (Rpt succ _ ∗ ¤|⇛ (Rpt put _ ∗ )Main (2)

⊢ ¤|⇛ (Rpt put _ ∗ ¤|⇛ "Main ⊢ ¤|⇛ (Main (3)

We begin the proof by applying verif-rpt-rcl. In (1), we duplicate �'�� and distribute it to two
clients. In (2), we apply two modular re�nements for two clients. In (3), we apply two gradual
re�nements for the main module, and get the end result.

Contrast this to the dead end we arrived before (○). Before, )Rpt served only one client because

the application of verif-rpt changed the de�nition of rpt which a�ected every client. Here, )Rpt
e�ectively serves both clients thanks to the duplicability of the persistence modality.
We can understand this in two ways. In terms of logic, the fundamentally new thing that RCL

brings to the table is the persistence modality. In terms of re�nement, this makes a natural extension
from a de�nition-wise re�nement into a call-wise re�nement. The granularity of re�nement (⊑)
is de�nition-wise and it was the root of the failure in○ (re�ning rpt to a speci�cation a�ects all
calls to rpt). On the contrary, the proof above essentially does a call-wise re�nement in the sense
that the two calls to rpt (in main) are re�ned to di�erent speci�cations using di�erent re�nement
results.
To our best knowledge, all existing frameworks have a fundamental issue in supporting it; i.e.,

the veri�cation above is fundamentally new. The issue is that the use of persistence modality results
in what we call a polysemic program, by which we mean programs containing multiple di�erent
de�nitions for a single function name. Indeed, under the hood, the above veri�cation unfolds to the
following sequence of re�nements (with 2 in the middle):

)Suc +)Put +)Rpt +)Main ⊑ . . . ⊑ ((Rpt succ _) + ((Rpt put _) +)Main ⊑ . . . ⊑ (Main

Here, we have a polysemic program in the middle—note that rpt is de�ned twice in ((Rpt succ _) +
((Rpt put _)—whereas the left (target) and the right (source) programs are monosemic (i.e., not
polysemic). In order for this re�nement to hold, it is essential to give proper semantics to polysemic
programs, and this is the key challenge in this work. Note that we cannot simply give trivial
semantics to polysemic programs, like top (unde�ned behavior) or bottom (empty behavior) because
that must break either the right or the left re�nement.

To wrap up, we have seen how the use of persistence modality allows a new veri�cation strategy
with Fig. 4. In the next section (§4), we will see the key challenge and our key idea to tackle it.

3.3 Position of This Work

Since RCL spans both re�nement and separation logic assertions in a new way, let us position RCL
within these contexts to avoid potential confusion.

Relation with separation logic. While we are borrowing symbols and rules from Iris base logic,
in RCL we give a completely di�erent interpretation: a logical proposition means a set of modules

instead of a set of program states as in its original use as a program logic.
Note that RCL is not meant to replace or compete with separation-logic-as-a-program-logic;

rather, our intention is to use them in conjunction. In RCL, we only consider composing these
small re�nements and actually establishing such a small re�nements (like )Fct ⊑ (Fct) is left to the
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256:10 Youngju Song and Dongjae Lee

user. Relational program logics [Frumin et al. 2018, 2021; Gäher et al. 2022; Turon et al. 2013] are
powerful techniques for establishing such small re�nements. Thus, relational program logics and
RCL complement each other.

Relation with re�nements. As mentioned earlier, RCL is not tied to a speci�c re�nement
framework; it could be instantiated with any notion of module and re�nement provided that they
satisfy the axioms of MRA. These axioms comprise standard axioms we have seen so far and a
few more to justify persistence modality. While these latter axioms are not satis�ed in existing
re�nement frameworks as-is, we �nd a minimal and natural extension that validates the latter.

4 Extending Operational Semantics for Persistence Modality

In this section, we �rst discuss the meaning of persistence modality in the world of re�nement and
modules (§4.1). Then, we see why this interpretation is sound with respect to the rules for � (§4.2).
Finally, we articulate the key challenge and the key idea on formalizing � (§4.3).

By the end of this section, it should be clear why )Rpt ⊢ � )Rpt —which we reserved explanation
for in §3.2—holds.

4.1 Interpretation of Persistence Modality (�) in the World of Refinement

We begin with the following question: what kind of module could possibly be duplicated? We
encourage readers to ponder this before continuing.

The answer is: modules without private state (stateless modules for short). In fact, statelessness
almost precisely1 captures duplicability, and it is intuitively understandable as follows (will further
be clari�ed in §4.3). First, a stateless module (which may well contain other computations like
let-bindings, function calls, or system calls) should be okay to duplicate; each copy will behave the
same way regardless of how many copies there are. Second, statefulness easily breaks duplicability.

Example 1. Consider the following stateful module ((Ctr). If it is duplicable, there is a contradiction.

(Ctr

private v: Z := 0

def incr(): Z ≡ v := v + 1; v

)ClntX

def fooX(): 1 ≡

print(incr())

(ClntX

private v: Z := 0

def fooX(): 1 ≡ v := v + 1; print(v)

def incr() ≡ triggerUB

Proof. Here, (Ctr is a simple counter module with a single method incr that increments the
module-private counter v and returns its value. Also, there are two identical clients of this counter
module,)Clnt1 and)Clnt2 (we are using X as a macro for 1 and 2), each having a single method foo1
and foo2 which simply calls incr and prints the result.
Now, if (Ctr is duplicable, we can prove:

(Ctr ⊕ )Clnt1 ⊕ )Clnt2 ⊑ ((Ctr ⊕ )Clnt1) ⊕ ((Ctr ⊕ )Clnt2) ⊑ (Clnt1 ⊕ (Clnt2

where we �rst duplicate (Ctr, distribute it to the two clients, and then do the usual re�nement (i.e.,
inlining the call to incr) to derive speci�cations for each clients, (Clnt1 and (Clnt2. However, such
a re�nement should not hold: the target and the source have di�erent behaviors. def main() ≡

foo1(); foo2() prints 1 and 2 in the target ((Ctr ⊕ )Clnt1 ⊕ )Clnt2) whereas the same program

1In theory, modules that are “e�ectively” stateless—modules that have state but for which there exists a semantically

equivalent version that is stateless—could also be duplicable. Such modules would include a module that only reads from

the state or a module that uses the state just as a cache for the computation. Since these modules can be re�ned to a

“syntactically” stateless version, we focus only on the “syntactically” stateless modules in this paper.
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prints 1 twice in the source ((Clnt1 ⊕ (Clnt2). The reason is that the state of the module (Ctr has a
single copy in the target, whereas in the source, there are two. ■

Similarly to Example 1, statelessness properly captures the ability to do call-wise re�nement.

Example 2. Consider the following stateful module ()Ctr) and its re�nement ()Ctr ⊑ (Ctr). If such a

re�nement could be applied call-wise on the client side, there is a contradiction.

)Ctr

private v: Z := 0

def incr(): Z ≡ v := v-1; -v

(Ctr

private v: Z := 0

def incr(): Z ≡ v := v+1; v

)Main

def main(): 1 ≡

print(incr()); print(incr())

Proof. Here, executing an implementation)Ctr ⊕)Main prints 1 and 2 (note that)Ctr decrements
the counter and then returns -v, not v). Now, since )Ctr ⊑ )Ctr and )Ctr ⊑ (Ctr holds, suppose that
we did a call-wise re�nement and reached an imaginary program where Main �rst calls )Ctr and
then (Ctr. Then, such a program prints 1 twice, which is wrong. ■

As a �nal remark, statelessness is not overly restrictive. As mentioned in §2, the implementation
modules are always stateless: they only operate on global state—memory—which either appears
explicit in the argument or appears as a primitive module [Song et al. 2023]. And, as shown in the

veri�cation of our running example (Fig. 4), we only need implementations ( )Rpt ) to be stateless.

4.2 Rules Related with Persistence Modality (�).

With the understanding of statelessness, we can now (intuitively) interpret � % as % in conjunction
with the fact that modules speci�ed by % are stateless. Now, let us examine the rules for this
persistence—or, stateless—modality. Relevant rules are shown at Fig. 5. We have already seen the
�rst three rules (pers-mono, pers-dup, and pers-e) in §3.2. pers-mono is self-explanatory. pers-dup
holds since the modules speci�ed in % are all stateless, and thus duplicable. pers-e simply forgets
the fact about statelessness.
The rule core-pers says that a core of any given module (|0 |) is stateless: core operator extracts

the stateless computations from a given module by simply interpreting all state accesses as UB.
Therefore, if a module 1 is already stateless, |1 | results in the same module as 1. Now, since )Rpt is

stateless, we have |)Rpt | ≡ )Rpt. This, together with core-pers, implies the desired )Rpt ⊢ � )Rpt .

A�nity. Now we see the �nal rule: affine. The rule is very simple, but its consequence is
signi�cant: it makes RCL an a�ne logic, meaning that one can freely drop any proposition in the
premise. That is, the following holds:

% ∗& ⊢ % ∗ True ⊢ % (weakening)

This is really useful since we want to mindlessly duplicate propositions via pers-dup, and we do not
want to keep excess ones in our �nal result. Moreover, we often want to just drop modules that are
not used anymore, just as we did in verif-rpt.

However, if we see the interpretation of weakening in re�nements, it is rather exotic. On the one
hand, such a rule makes sense: if one could prove 0 ⊑ 2 , then 0 ⊕ 1 ⊑ 2 would also hold because
one can utilize more modules (1) in establishing the latter re�nement. On the other hand, this also
entails the following exotic result: (foo ↦→ __. 1) ⊕ (foo ↦→ __. 2) ⊑ (foo ↦→ __. 1).
In fact, this rule and pers-dup both are closely related to the key challenge in this paper:

applications of these rules easily result in polysemic programs, and the polysemic semantics we
give must justify these rules.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 256. Publication date: August 2024.



256:12 Youngju Song and Dongjae Lee

pers-mono

% ⊢ &

� % ⊢ �&

pers-dup

� % ⊢ � % ∗� %

pers-e

� % ⊢ %

core-pers

0 ⊢ � |0 |
affine

% ∗ True ⊣⊢ %

Fig. 5. Selected rules related with �.

In the next subsection, we will see how we give operational semantics to these polysemic
programs in a way that is consistent with the desired rules.

4.3 Operational Semantics for Polysemic Programs

As mentioned in §1, re�nement frameworks as-is do not admit persistence modality. The problem
is that duplicating modules results in a polysemic program.
In existing re�nement frameworks, a polysemic program is considered invalid (often syntacti-

cally), and thus, its operational semantics is not properly given. This is a sensible design: such a
polysemic program is considered syntactically invalid in programming languages (e.g., C).

In RCL, such polysemic programs would very well appear as a result of pers-dup (where each copy
can thereafter be re�ned to di�erent de�nitions, e.g., as in 2). Note, however, that such polysemic
programs appear only in the intermediate proof states, and do not appear in the end result (recall
the end result in §3.2).

Goal of the subsection. In this subsection, we demonstrate how the operational semantics of a
polysemic program can be adequately de�ned by extending existing operational semantics in a
simple and elegant way. By extending, we mean that we are only giving semantics to programs
that have been considered invalid (polysemic programs), and the semantics of valid programs will
remain exactly the same. Thus, this extension does not a�ect the end result.

The extension we are making is adequate, in the sense that it validates all the rules in Fig. 5. As
we will see in §6, this boils down to the following two axioms in MRA:

∀0. 0 ⊑ |0 | ⊕ 0 ∀0. 0 ⊑ ∅

where ∅ is the unit of the linking operator ⊕. The former axiom is meant to justify pers-dup, and
the latter the affine. Validating these axioms is precisely our goal here.

Background: operational semantics and behavior of a program. Before we proceed, we
quickly cover some relevant background to avoid confusion. As we have seen in §2, we denote
the behavior (which is a set of traces) of a module with Beh(−) ∈ " → P()A024) where " is
the type of module. Note well that the module linker ⊕ ∈ " → " → " links the modules, not
the set of traces. Then, a behavior of a linked program "0 ⊕ "1 is given as Beh("0 ⊕ "1), not
Beh("0) ⊕ Beh("1) (which would not type-check). When we discuss the behavior of a program,
we consider the behavior of a closed (fully linked) whole program.

For a closed program, the behavior is straightforwardly computed (co-)recursively. For instance,
consider the following simple program:

main ↦→ let x := pick(N) in f(x) ⊕ f ↦→ _x. print(x)

where pick randomly picks (also called demonic non-determinism) one of the possible values in
the given set. Then, the behavior of this program is (intuitively) computed as follows:

Beh(main()) = Beh(let x := pick(N) in f(x)) =
⋃

G∈N

Beh(f(G)) =
⋃

G∈N

{Obs print G}

where Obs print G is a single-length trace emitted from the program code, print(x) .
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Table 1. Semantics of polysemic programs.

Approach
Duplications

0 1 2+

Existing frameworks UB B0 Invalid

Angelic
⋂

B
⋂

B
⋂

B

Semantics of polysemic programs. Suppose that we are calling a function foo, and there are
multiple de�nitions for it. Executing each de�nition results in possibly di�erent behavior and we
denote each of them using an index: 8th de�nition’s behavior is denoted as B8 . We use B to denote
the set containing all B8 ; i.e., it is a set of set of traces.

To begin with, consider how the existing frameworks de�ne the semantics of calling foo (Table.
1). If foo is not de�ned (i.e., there is no function to execute), it is considered UB. If foo is de�ned
exactly once, that one is executed with behavior B0. Finally, if foo has multiple de�nitions, it is
considered invalid. Exactly how it is considered invalid di�ers by frameworks: many of them (i)
syntactically reject such a program, (ii) some just choose the leftmost one and keep executing (B0)
and (iii) some consider it as UB. However, none of them work for us: (ii) breaks the commutativity
of linking, and (iii) breaks a�nity (a�nity yields main ↦→ skip ⊕ main ↦→ skip ⊑ main ↦→ skip,
which is false because the target triggers UB while the source not).

Our solution is to de�ne the semantics as the intersection of all possible behaviors, using
so-called angelic non-determinism; and not just for the polysemic case, but for all three cases! Before
we proceed, �rst note that

⋂
B equals the usual semantics when the function is not de�ned or

de�ned once.2 This suggests that de�ning the polysemic case the same as
⋂

B is a natural extension,
unifying all three cases.

Now we see if such a de�nition justi�es the two axioms, ∀0. 0 ⊑ ∅ and ∀0. 0 ⊑ |0 | ⊕ 0. It is easy
to see that the former holds: having more de�nition will always result in less behavior because the
intersection of behaviors monotonically decreases.

On the other hand, the latter axiom is more subtle. Consider a function call foo() where foo is
de�ned in 0 and thus also in |0 |. We use b0 to refer to the behavior of calling foo() of 0, b1 for
that of |0 |, and B for those of the outside modules (they can very well have de�nitions for foo too).
Then, we need to show

⋂
({b0} ∪ B) ⊆

⋂
({b0, b1} ∪ B). Using the distributive law, it su�ces to

show
⋂
{b0} ⊆

⋂
{b0, b1}; i.e., b0 ⊆ b0 ∩ b1. Now, there are two cases: if foo does not access the

state, b0 equals b1 and the inclusion holds. If foo does access the state, b1 results in UB—recall that
the core operator maps all state access to UB. Then, since UB is an identity element for ∩—recall
that UB is the set of all traces—the inclusion holds again.

Example: Composing re�nements of Rpt. The extended semantics still validates all the rea-
soning principles we have seen so far. As a sanity check, we revisit the entailment between 2 and 3

in our running example (Fig. 4). Under the hood, the re�nement involved in this entailment is:

((Rpt succ ...) ⊕ ((Rpt put ...) ⊕ )Main ⊑ ((Rpt put ...) ⊕ "Main

As we can see, the left-hand side (LHS) of this re�nement is polysemic. In this re�nement, the
behavior of LHS is exactly the same as the behavior of the right-hand side (RHS). Speci�cally, the
behavior of LHS is computed as follows where  [X] ≜ let a := X in rpt(put,a,a); 0.

Beh(!�() = Beh( [rpt(succ,1,1)]) =
Beh( [assume(succ == succ); (5 succ 1)])

⋂
Beh( [assume(succ == put); (5 put 1)]) =

Beh( [5 succ 1])
⋂

UB = Beh( [5 succ 1]) = Beh( [2]) = Beh('�()

2In the former case,
⋂
∅ equals UB since ∀G. (G ∈

⋂
∅) ⇔ (∀B8 ∈ ∅. G ∈ B8 ) ⇔ ⊤ ⇔ (G ∈ UB) . The latter case is trivial.
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De�nition 1. A MRAS is a tuple (", (⊑) ∈ " → " → Prop, (⊕) ∈ " → " → ", |−| ∈ " → ",∅ ∈ ")

satisfying:

∀0. 0 ⊑ 0 (mras-ref-refl)

∀0, 1, 2. 0 ⊑ 1 ∧ 1 ⊑ 2 ⇒ 0 ⊑ 2 (mras-ref-vcomp)

∀00, 01, 10, 11 . 00 ⊑ 10 ∧ 01 ⊑ 11 ⇒ 00 ⊕ 01 ⊑ 10 ⊕ 11 (mras-ref-hcomp)

∀0, 1, 2. (0 ⊕ 1) ⊕ 2 = 0 ⊕ (1 ⊕ 2) (mras-link-assoc)

∀0, 1. 0 ⊕ 1 = 1 ⊕ 0 (mras-link-comm)

∀0. 0 = |0 | ⊕ 0 (mras-core-intro)

∀0. 0 ⊑ ∅ (mras-ref-affine)

∀0. 0 ⊕ ∅ = 0 (mras-link-unit)

∀0. | |0 | | = |0 | (mras-core-idem)

|∅| = ∅ (mras-core-unit)

∀0, 1. |0 ⊕ 1 | = |0 | ⊕ |1 | (mras-core-commute)

Fig. 6. Definition of MRAS.

In the �rst line, we simply unfold the de�nition of main. In the second line, the call to rpt is
computed as the intersection of two possible cases: executing ((Rpt succ ...) or ((Rpt put ...). In
the third line, we continue computation in both cases. In the former, the condition in assume is
met and thus stripped away. In the latter, however, the condition in assume is not met, and thus it
triggers UB. Since UB is an identity element for

⋂
, we remove it and decide that the “right” branch is

the former one. Continuing execution on the former case, we reach  [2] which is the body of RHS.
We conclude this section with a �nal remark. A reader familiar with angelic non-determinism

might be concerned that its misuse could inadvertently lead to an empty behavior. However, in
our use of angelic non-determinism, it does not happen. Recall that the implementation of the
whole program—say )—is monosemic (i.e., not polysemic), ensuring its behavior is never an empty
set. Then, in any end result ) ⊑ ( we establish, the behavior of the ( also cannot be an empty set:
the very de�nition of ⊑ guarantees that the set of behavior of ( is larger than that of ) , which is
non-empty. In essence, while our use of angelic non-determinism provides fundamentally new
strategies for formulating “small re�nements”, it is only relevant in intermediate proof states and
does not in�uence the end result.

5 Refinement Composition Logic

In this section, we give formal de�nitions and rules of RCL. For expository purposes, we �rst
formalize RCL assuming MRAS (MRA Strengthened), a slightly stronger version of MRA. This
greatly simpli�es presentation and formalization.3 The gap between MRAS and MRA is �lled in §6.

5.1 MRAS and Definitions of RCL

We �rst de�ne MRAS as shown in Fig. 6. The colored axioms are the strengthened ones, having
equality instead of re�nements (⊑).
We have already seen the �rst seven axioms. These each correspond to (in order): ref-refl,

ref-vcomp, ref-hcomp, ref-comm, ref-assoc, and the two axioms in §4.3. The last four axioms are
also easy to understand. mras-link-unit simply states that ∅ is the unit for ⊕. Finally, recall the
intuition behind the |− | operator (§4.2): it simply maps all state accesses to UB. With this intuition,
the last three rules (mras-core-idem, mras-core-unit, and mras-core-commute) are straightforward.

3Speci�cally, MRAS is closer to the Iris RA (Resource Algebra), and it allows de�ning each symbol in the same way as in

(non-step-indexed) Iris.
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JTrue ∈ mPropK ≜ _0. ⊤

JFalse ∈ mPropK ≜ _0. ⊥

J(∀G ∈ - . % G) ∈ mPropK ≜ _0. ∀G ∈ - . (J% G ∈ mPropK 0)

J(∃G ∈ - . % G) ∈ mPropK ≜ _0. ∃G ∈ - . (J% G ∈ mPropK 0)

J 1 K ≜ _0. 1 ≼ 0

J ¤|⇛% K ≜ _0. ∃1. 0 ⊑ 1 ∧ J% K 1

J% ∗& K ≜ _0. ∃1, 2. 0 = 1 ⊕ 2 ∧ J% K 1 ∧ J& K 2

J% −∗ & K ≜ _0. ∀1 ∈ J% K. J& K (0 ⊕ 1)

J� % K ≜ _0. J% K |0 |

Fig. 7. Definitions of symbols in RCL.

Semantic domain of mProp. Now, given an arbitrary MRAS, we will de�ne RCL. We begin
with the semantic domain for propositions in RCL: mProp (abbreviation of module propositions).
As said, mProp is de�ned as the set of modules, and (now in full technical detail) a condition that
ensures a�nity. Speci�cally, we have:

JmPropK ≜ {% ∈ " → Prop | ∀0 ≼ 1, % 0 ⇒ % 1} J% ⊢ & K ∈ Prop ≜ % ⊆ &

where Prop stands for meta-level propositions (e.g., that of mathematics or Coq) and 0 ≼ 1 ≜
∃2. 1 = 0 ⊕ 2 . Such a relation ≼ is called an inclusion relation and is re�exive and transitive. With
this, mProp is upward-closed with ≼. This ensures a�nity: i.e., affine.
The logical entailment between mProps, % ⊢ & , is simply de�ned as a set inclusion.

De�nitions of symbols. The primitive symbols in RCL are as follows:4

0 ∈ " ::= 0 | 0 ⊕ 0 | |0 |

% ∈ mProp ::= 0 | ¤|⇛% | % ∗ % | � % |

% −∗ % | ∃G ∈ - . % | ∀G ∈ - . % | False | True

Q ∈ Prop ::= % ⊢ % | % ⊣⊢ % | . . .

The de�nitions of these symbols are given in Fig. 7. These are either already explained ( − , ¤|⇛ ,
∗, and �) or standard (−∗, quanti�ers and truth values). We mention two points.
First, the de�nition of � % uses core operator, specifying the set of modules that satisfy %

statelessly. Then, the axioms of � are direct consequences of the properties of the core operator.
Speci�cally, mras-core-intro and mras-core-idem entails ∀0. |0 | = |0 | ⊕ |0 |, which justi�es pers-dup.

Second, the de�nition of 1 is now extended to a set of modules that “includes” 1. This is needed
to satisfy the condition on a�nity. As we will see next, it satis�es all the rules we need.

5.2 Rules of RCL

Now we see the logical rules in RCL. To understand them, it is best to begin our journey with the

adequacy of RCL: the rules logic-i and logic-e. These rules say that 0 ⊢ ¤|⇛ 1 precisely captures
the proposition 0 ⊑ 1, and these rules act as the main entry/exit point of RCL, respectively.
To see why logic-i and logic-e holds, we begin with the following lemma:

Lemma 5.1 (incl-ref). ∀0 1, 0 ≼ 1 → 1 ⊑ 0

Proof. By unfolding ≼ and applying mras-link-unit, mras-ref-hcomp, and mras-ref-affine. ■

4Logical connectives like ∧ and ∨ could be derived from quanti�ers (∀ and ∃, respectively), thus omitted.
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logic-i

0 ⊑ 1

0 ⊢ ¤|⇛ 1

logic-e

0 ⊢ ¤|⇛ 1

0 ⊑ 1

entails-refl

% ⊢ %

entails-trans

% ⊢ & & ⊢ '

% ⊢ '

ref-mono

% ⊢ &

¤|⇛% ⊢ ¤|⇛&

star-mono

% ⊢ &

% ∗ ' ⊢ & ∗ '

wand-mono

& ⊢ % ' ⊢ (

% −∗ ' ⊢ & −∗ (

pers-mono

% ⊢ &

� % ⊢ �&

true-i

% ⊢ True

false-e

False ⊢ %

univ-i

∀x ∈ X. (% ⊢ &)

% ⊢ ∀G ∈ - . &

univ-e

C ∈ - % ⊢ ∀G ∈ - . &

% ⊢ & [C/G]

star-link

0 ∗ 1 ⊣⊢ 0 ⊕ 1

star-comm

% ∗& ⊢ & ∗ %

star-assoc

(% ∗&) ∗ ' ⊢ % ∗ (& ∗ ')

ref-i

% ⊢ ¤|⇛%

ref-e
¤|⇛ ¤|⇛% ⊢ ¤|⇛%

ref-frame
¤|⇛% ∗& ⊢ ¤|⇛(% ∗&)

wand-i

% ∗& ⊢ '

% ⊢ & −∗ '

wand-e

% ⊢ & −∗ '

% ∗& ⊢ '

pers-star

� % ∗�& ⊢ �(% ∗&)
pers-idemp

� % ⊢ � � %

Fig. 8. Selected rules for RCL.

Then, we have the following theorem:

Theorem 5.2 (adeqacy). logic-i and logic-e holds.

Proof. By unfolding de�nitions, the goal becomes: 0 ⊑ 1 ⇔ (∀2.(0 ≼ 2 ⇒ ∃3.2 ⊑ 3 ∧ 1 ≼ 3)).
(⇒) Apply Lemma 5.1 to a ≼ c, instantiate d with b, and then apply mras-ref-vcomp.
(⇐) Instantiate c with a, apply Lemma 5.1 to b ≼ d, and then apply mras-ref-vcomp. ■

All the rules in Fig. 8 follow from a few steps of unfolding and applying axioms in MRAS. We
quickly go over rather standard parts and focus on interesting observations.

Entailments, monotonicity, quanti�ers, truths, and separating conjunction. Entailment
forms a preorder (entails-refl and entails-trans). Given % ⊢ & , the monotonicity rules (the ones in
the second row; ref-mono, star-mono, wand-mono, and pers-mono) allow any positive occurrences
of % in RCL to be substituted into & (and in reverse order for negative occurrences).
Rules for truth values, True/False (denoting a full set/an empty set), are self-explanatory (true-

i/false-e). Rules for quanti�ers, ∀/∃, are also standard (univ-i and univ-e/rules for ∃ are omitted).
Separating conjunction (star) is just a re�ection of ⊕ in the logic level. star-link equates ⊕ in the

domain with ∗ in the logic. Here, % ⊣⊢ & is just a shorthand for (% ⊢ &) ∧ (& ⊢ %). We also have
commutativity and associativity of ∗ (star-comm and star-assoc).

Correspondence between ⊑ and ¤|⇛ . The re�nes modality ( ¤|⇛) is originally called an update

modality in the original Iris, having the three primitive rules ref-i, ref-e, and ref-frame. It turns
out, with the de�nition of re�nes modality above, these three rules precisely correspond to ref-

refl, ref-vcomp, and ref-hcomp! To the best of our knowledge, such a correspondence between
compositionality theorems for ⊑ and primitive rules for ¤|⇛ has not been observed before.5

5Even the authors of DimSum [Sammler et al. 2023] and CCR [Song et al. 2023]—recent projects that span both re�nement

and Iris—were not aware of such a correspondence.
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It is relatively easy to check that theorems of ⊑ imply the primitives rules of ¤|⇛ by unfolding
the de�nition. We present the reverse direction: we use the latter in RCL to derive the former.

0 ⊢ ¤|⇛ 0

0 ⊑ 0

0 ⊑ 1

0 ⊢ ¤|⇛ 1

1 ⊑ 2

1 ⊢ ¤|⇛ 2

0 ⊢ ¤|⇛ 1 ⊢ ¤|⇛ ¤|⇛ 2 ⊢ ¤|⇛ 2

0 ⊑ 2

0 ⊑ 1

0 ⊢ ¤|⇛ 1

0′ ⊑ 1′

0′ ⊢ ¤|⇛ 1′

0 ∗ 0′ ⊢ ¤|⇛( 1 ∗ 0′ ) ⊢ ¤|⇛ ¤|⇛( 1 ∗ 1′ ) ⊢ ¤|⇛( 1 ∗ 1′ )

0 ⊕ 0′ ⊑ 1 ⊕ 1′

The �rst proof derives ref-refl by instantiating ref-iwith 0 and then applying logic-e. The second
proof derives ref-vcomp as follows: we �rst lift each re�nement into the logic with logic-i, compose
them with ref-mono, remove duplicated ¤|⇛with ref-e, and get the �nal result with logic-e. The
third proof derives ref-hcomp in a similar way: we �rst lift each re�nement with logic-i, compose
them with star-mono, ref-mono and ref-frame, remove duplicated ¤|⇛with ref-e, and get the �nal
result with logic-e.

Magic wand. Magic wand, % −∗ & , is a standard symbol in separation logic. One way to
understand wand is as a (right) adjoint of the separating conjunction, satisfying the rules wand-i
and wand-e. The wand is also often called separating implication, thanks to the following rule:
% ∗ (% −∗ &) ⊢ & (derived by star-comm, wand-i and entails-refl).
In the context of separation logic, it is known that while the wand might not necessarily give

additional proof power, it is very handy in various ways to streamline proofs [Charguéraud 2023];
hence its widespread use.

However, the wand is exotic in re�nement frameworks. Indeed, the adjoint for ⊕ operator (say,
−⊕) is not necessarily well-de�ned: e.g., (foo ↦→ __. print(1)) −⊕ (foo ↦→ __. print(2)) is not
well-de�ned (i.e., there is no module that translates print(1) into print(2) when linked). However, −∗
is well-de�ned in the logical system of RCL where the semantic domain comprises both modules
and logical propositions; intuitively, a nonsensical wand like the one above just results in False.
A more practical way to understand wand is as a drop-in replacement of logical entailment

(⊢). Given two mProps, logical entailment returns a meta-level proposition, Prop, whereas wand
returns an mProp again, which still resides inside the logic.

Persistence (stateless) modality. We have already discussed the most important rules of per-
sistence modality in §4.2. We have just two more rules here. pers-star basically says that if we
have two stateless modules, the linked one is also stateless. pers-idemp ensures that the persistence
modality is idempotent; with pers-e, we have � % ⊣⊢ � � % .

6 More on Algebra: MRAS, MRA, and Connection to Iris

In this section, we discuss the underlying algebra more. The key challenge we tackle here is bridging
the gap between MRAS and MRA. Our key idea is to give a novel homomorphism to connect these.

In §6.1, we present MRA and give a homomorphism from MRA to MRAS. As a result, we expose
MRA (which is easier to satisfy) to the user, translate MRA into MRAS using a homomorphism,
and instantiate RCL with MRAS. Such a homomorphism is achieved by taking a novel quotient on
the given MRA.

In §6.2, we present some bonus results. Readers unfamiliar with Iris can safely skip this subsection.
We connect RCL with Iris by giving a translation fromMRAS to Iris RA (Resource Algebra). Actually,
the resulting RA is slightly stronger than the original RA (i.e., MRAS assumes one axiom that is
not required in RA), and we call this RAC (RA where Core commutes). It turns out that we can use
the same technique as in §6.1 to weaken the axioms of RAC: we call this RACW (RAC Weakened).
This could potentially be useful for future constructions of Iris RA.
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Fig. 9. A diagram showing relations between algebras.

In summary, we prove the diagram shown in Fig. 9. Solid arrows are homomorphisms where the
text above them denotes the quotient used on such; those without text are trivial homomorphisms
(from an algebra with stronger axioms to weaker axioms). Dotted arrows are translation of operators
in RCL into Iris. Grey-colored boxes are the algebras we actually use for instantiating the logic.

6.1 Weakening the Axioms of MRAS

Now we de�ne MRA, containing the set of axioms that actually appears to the user.

De�nition 2. A MRA is a MRAS with axioms mras-core-intro, mras-link-comm, and mras-link-assoc

weakened as follows:

∀0. 0 ⊑ |0 | ⊕ 0 (mra-core-intro)

∀0, 1. 0 ⊕ 1 ⊑1 ⊕ 0 (mra-link-comm)

∀0, 1, 2. (0 ⊕ 1) ⊕ 2 ⊑ 0 ⊕ (1 ⊕ 2) (mra-link-assoc)

Note that mras-core-intro (using equality) is weakened to mra-core-intro (using ⊑) that is
actually satis�ed by the polysemic semantics we discussed (§4.3). Also, mras-link-comm and mras-

link-assoc are weakened correspondingly.
Then, we will internally cast MRA into MRAS and instantiate RCL with MRAS, but the resulting

logic behaves the same way as if we were instantiating the logic with the operators and notion of
module given in MRA; let us refer to this hypothetical logic as a RCL2. We do this by establishing
a homomorphism from MRA to MRAS. That is, given an MRA, we want to derive an MRAS
with "ˆ as a notion of module—with embedding (−)ˆ ∈ " → "ˆ—and operators for "ˆ (we
overload the notations) that satis�es all the axioms in MRAS and also the following properties
about homomorphism:

0 = 1 ⇒ 0ˆ = 1ˆ (0 ⊕ 1)ˆ = 0ˆ ⊕ 1ˆ |0 |ˆ = |0ˆ| 0ˆ ⊑ 1ˆ⇔ 0 ⊑ 1 (hom-mra)

The above conditions, basically saying that everything commutes, are su�cient to simulate any
proof of RCL2 in RCL: given a proposition % in RCL2, we map this into a proposition %ˆ in RCL by

simply changing all 0 into 0ˆ . Then, every rule application in RCL2 can be simulated in RCL

while preserving such a simulation-invariant. For example, consider star-link: 0 ⊕ 1 ⊣⊢ 0 ∗ 1

in RCL2 is simulated in RCL as (0 ⊕ 1)ˆ ⊣⊢ 0ˆ ⊕ 1ˆ ⊣⊢ 0ˆ ∗ 1ˆ . Also, the logic-i in RCL2
is simulated in RCL as follows: 0 ⊑ 1 ⇒ 0ˆ ⊑ 1ˆ ⇒ 0ˆ ⊢ ¤|⇛ 1ˆ and vice versa for logic-e:

0ˆ ⊢ ¤|⇛ 1ˆ ⇒ 0ˆ ⊑ 1ˆ⇒ 0 ⊑ 1.
Now, we are left with actually building such a homomorphism. We �rst de�ne ≡ as follows:

0 ≡ 1 ≜ 0 ⊒⊑ 1 ∧ |0 | ⊒⊑ |1 | "ˆ ≜ "/≡ 0ˆ ≜ [0]≡
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where % ⊒⊑ & denotes % ⊑ & ∧& ⊑ % . ≡ forms an equivalence relation over" and we use"/≡
as"ˆ. [0]≡ is an equivalence class over ≡ containing 0. ≡ respects all the operators, ⊑, ⊕, and |− |:

∀0, 0′, 1, 1′ . 0 ≡ 0′ ⇒ 1 ≡ 1′ ⇒ (0 ⊑ 1 ⇔ 0′ ⊑ 1′)

∀0, 0′, 1, 1′ . 0 ≡ 0′ ⇒ 1 ≡ 1′ ⇒ 0 ⊕ 1 ≡ 0′ ⊕ 1′

∀0, 0′ . 0 ≡ 0′ ⇒ |0 | ≡ |0′ |

and induces the operators ⊑ , ⊕, |− | for"ˆ for free as follows:

[0]≡ ⊑ [1]≡ ≜ 0 ⊑ 1 [0]≡ ⊕ [1]≡ ≜ [0 ⊕ 1]≡ | [0]≡ | ≜ [|0 |]≡

Such de�nitions satisfy all the axioms for MRAS and properties for homomorphism (hom-mra). We
only discuss the proof of mras-core-intro here. For any given 0, we need to prove:

0 ≡ |0 | ⊕ 0 ⇔ 0 ⊒⊑ |0 | ⊕ 0 ∧ |0 | ⊒⊑ ||0 | ⊕ 0 | ⇔ |0 | ⊒⊑ ||0 | ⊕ 0 | ⇔ |0 | ⊒⊑ ||0 | | ⊕ |0 |

where we �rst unfold ≡, discharge the �rst condition with mra-core-intro and mras-ref-affine,
simplify with mras-core-commute. (⊑) By applying mra-core-intro with |0 |. (⊒) By applying mras-

ref-affine. ■

6.2 Embedding MRA into Iris RA

Now, we show how one can embed MRA into the original RA in Iris. This could potentially be
useful when enriching RCL with more advanced protocols. Readers unfamiliar with Iris can safely
skip this subsection.
We will be translating re�nement in MRA into frame-preserving update in Iris RA. For this, we

parameterize over one additional argument, C ∈ " : the whole target program in the veri�cation
of our interest. Then, given a MRA and C ∈ " , we can de�ne a (unital) resource algebra as
(",V, |− |, (⊕),∅) whereV is de�ned as follows:

V(0) ≜ C ⊑ 0

Then, we have the following rules corresponding to logic-e and logic-i:
iris-i

0 ⊑ 1

0 ⊢ ¤|⇛ 1

iris-e

C ⊢ ¤|⇛ 1

C ⊑ 1

Note that in iris-e, the target side is �xed as t, but this should be okay since we will be using such a
rule only for the end result (the result of composing all the small re�nements).

Such an embedding satis�es all the axioms of RA. In fact, the resulting RA is slightly stronger than
the original RA that it satis�es mras-core-commute, whereas in the original Iris RA the required
axiom is a slightly weaker version:

∀0, 1. 0 ≼ 1 ⇒ |0 | ≼ |1 | (ra-core-mono)

Let us name a RA with ra-core-mono strengthened to mras-core-commute as RAC (RA where Core
commutes). Then, our construction results in RAC.

Weakening the axioms of RA? The above weakening and embedding led us to a question of
whether we could weaken the axiom of original RA in the same way we did for MRA. As it turns
out, there is not much room to squeeze in RA, but we can still have an interesting result.

First, note that RA does not have the axiom mras-core-commute which was used crucially in the
validation of mras-core-intro above. Thus, the same strategy as above would not work for RA.

However, if we consider RAC, we can weaken its axioms using the above strategy. This is still an
interesting result because axiom mras-core-commute—the only di�erence between RA and RAC—is
commonly satis�ed by RA instances. Indeed, to the best of our knowledge, all the instances of RA
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Table 2. Summary of refinement frameworks in terms of building blocks and theories for composition.

Vanilla Re�nements Layered Re�nements RCL

Building block ) ⊑ ( (1 ⊨ )2 : (2 Logical formula

Theories for
composition

ref-refl, ref-vcomp,
ref-hcomp

Layer Calculus Logical rules

% ≡−∗& ≜ % −∗ ¤|⇛&
vs-refl

% ≡−∗%

vs-trans

(% ≡−∗&) ∗ (& ≡−∗')
% ≡−∗'

vs-frame

(% ≡−∗% ′) ∗ (& ≡−∗& ′)
(% ∗&) ≡−∗ (% ′ ∗& ′)

layer-hcomp

(1 ⊨ )2 : (2 (2 ⊨ )3 : (3

(1 ⊨ )2 ⊕ )3 : (3

layer-vcomp

(1 ⊑ (
′
1 ( ′1 ⊨ )2 : (

′
2 ( ′2 ⊑ (2

(1 ⊨ )2 : (2

layer-tcomp

(1 ⊨ )2 : (2 (G ⊨ )~ : (~

(1 ⊕ (G ⊨ )2 ⊕ )~ : (2 ⊕ (~

Fig. 10. Definition of view shi� operator and its rules (above), and the essence of Layer Calculus (below).

in the o�cial Iris except for the one (that encodes state transition systems [Jung et al. 2015]) satisfy
mras-core-commute.

Speci�cally, we de�ne a weakened version of RAC, called RACW (RAC Weakened), as follows:

De�nition 3. A RACW is a RAC with following �ve axioms weakened by changing equality into⇝ and↭:

∀0. 0⇝ |0 | ⊕ 0 (racw-core-intro)

∀0. | |0 | |⇝|0 | (racw-core-idem)

∀0, 1. 0 ⊕ 1⇝1 ⊕ 0 (racw-add-comm)

∀0, 1, 2. (0 ⊕ 1) ⊕ 2⇝0 ⊕ (1 ⊕ 2) (racw-add-assoc)

∀0, 1. |0 ⊕ 1 |↭|0 | ⊕ |1 | (racw-core-commute)

where 0↭ 1 is a syntactic sugar for 0⇝ 1 ∧ 1 ⇝ 0. Then, a homomorphism from RACW into
RAC could be constructed in the same way as above but with the following equivalence relation:

0 ≡ 1 ≜ 0↭ 1 ∧ |0 |↭ |1 |

The resulting quotient satis�es all axioms of RA and also the following rules for homomorphism:

0 = 1 ⇒ 0ˆ = 1ˆ (0 ⊕ 1)ˆ = 0ˆ ⊕ 1ˆ |0 |ˆ = |0ˆ| Vˆ0ˆ⇔V0 0ˆ⇝ ˆ1ˆ⇔ 0⇝ 1 (hom-ra)

This result could potentially be useful for future constructions of RA that it obligates, assuming
one stronger axiom, multiple weaker axioms to the user.

7 Derived Constructs and Their Applications

An important virtue of modern separation logic including Iris is that they have aminimal core [Pym
et al. 2004]: tremendous e�orts have been made to reduce the logic into minimal primitive mech-
anisms. On the other hand, this means that a plethora of constructs are derived on top of these
minimal primitives. This section reports on our e�orts to understand some of these important
constructs in the RCL side; i.e., �nding their correspondence in the re�nement setting.

7.1 View Shi� Operator

View shift operator (≡−∗) is a construct widely used in Iris originating from [Dinsdale-Young et al.
2010]. As presented in Fig. 10, it is just a syntactic sugar for a combination of magic wand and
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update (re�nes) modality. View shifts are re�exive (vs-refl) and transitive (vs-trans), and also
horizontally composable (vs-frame); they follow directly from the rules in Fig. 8.

Interestingly, view shift operator reveals an alternative approach to de�ne “layered re�nement”
and the Layer Calculus inside RCL. Table. 2 summarizes these di�erent approaches in terms of
building blocks and theories for composition. Let us begin by reviewing the essence of layered
re�nements.

Layer Calculus. The idea of layered re�nement was popularized by CAL (Certi�ed Abstraction
Layers) [Gu et al. 2015], and its key idea is now widely adopted in various frameworks [Lee et al.
2023; Sammler et al. 2023]6. In this section, we discuss a general pattern among these.

Actually, we have already seen the key idea behind layered re�nement with Fig. 2. That is, layered
re�nement is simply the following abstraction built on top of vanilla re�nements:

(1 ⊨ )2 : (2 ≜ (1 ⊕ )2 ⊑ (2

which says that the “client” )2 re�nes (2 while using the speci�cation of the “library” (1.
What makes layered re�nement particularly useful is the Layer Calculus—a set of composition

rules for composing these building blocks—shown in Fig. 10. These rules allow modular (via layer-

hcomp) and gradual (via layer-vcomp) veri�cation. The �nal rule, layer-tcomp, allows composing
two layered re�nements that do not depend on each other.

Layer Calculus in RCL. We de�ne layered re�nement in RCL as follows, along with adequacy:

(% ⊨ & : ') ∈ mProp ≜ (% ∗&) −∗ ¤|⇛'

layer-i

0 ⊨ 1 : 2

0 ⊨ 1 : 2

layer-e

0 ⊨ 1 : 2

0 ⊨ 1 : 2

we are overriding the notation ⊨ for the layered re�nement in RCL (having the type mProp). This
de�nition is equivalent to (% ⊨ & : ') ≜ & −∗ (% ≡−∗'). Our layered re�nement in RCL satis�es all
the rules of Layer Calculus (Fig. 10); the proofs are straightforward, and we omit them here.

Now, consider an example where we compose three layered re�nements (for�0,�1, and�2 each)
in the original layer calculus:

(!0 ⊨ �0 : !0 ∗ !1) ∧ (!1 ∗ !0 ⊨ �1 ∗�2 : !2 ∗ !3) =⇒ (!0 ⊨ �0 ∗�1 ∗�2 : !2 ∗ !3)

(!0 ⊨ �0 : !0 ∗ !1) ∧ (!1 ⊨ �1 : !2) ∧ (!0 ⊨ �2 : !3) =⇒ (!0 ⊨ �0 ∗�1 ∗�2 : !2 ∗ !3)

Here, we apply layer-tcomp for the latter two (�1 and �2) and then apply layer-hcomp to conclude
the proof.
Of course, we can prove this the same way in RCL using the same rules. Moreover, the layered

re�nement de�ned in RCL enables (arguably) a more streamlined proof using the rules of RCL:

(!0 ≡−∗!0 ∗ !1) ∗ (!1 ≡−∗!2) ∗ (!0 ≡−∗!3) ⊢ (!0 ≡−∗!2 ∗ !3)
(!0 ⊨ �0 : !0 ∗ !1) ∗ (!1 ⊨ �1 : !2) ∗ (!0 ⊨ �2 : !3) ⊢ (!0 ⊨ �0 ∗�1 ∗�2 : !2 ∗ !3)

In this proof, we start by pulling out �0 ∗�1 ∗�2 from the goal and feed them into each layered
re�nement in the premise. Then, we are left with composing view shifts, which are easier to work
with since the modules �8 are already discharged. Usual rules for layer composition still work with
view shifts: e.g., layer-hcomp correspond to vs-trans and layer-tcomp to vs-frame.

Such �exibility comes from the use of magic wand, which is (as discussed in §5) a new feature
enabled by RCL.
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(Mem

private next: L := 0

private mem: L→ Option (List V) :=

_ _. None
def calloc(sz: int64): P ≡

var d := pick(L)

var next := next + d + 1

mem := mem[next← 8=8C_;8BC sz 0]

(next, 0)

def load(p: P) ≡

var vs := unwrapUB(mem[fst p])

var r := unwrapUB( vs[snd p])

r

def store(p: P, v: V): 1 ≡ ...

)Var

private p: P

def init(): 1 ≡

p := calloc(1)

def get(): int64 ≡

load(p)

def set(w: int64): 1 ≡

store(p, w)

(Var

private v: Option (int64)
:= None

def init(): 1 ≡

v := Some(0)

def get(): int64 ≡

unwrapUB(v)

def set(w: int64): 1 ≡

v := unwrapUB(w)

V ≜ P ⊎ int64 (pointer and integer) P ≜ (L × N (block and o�set) ⊎ String (function pointers)) L ≜ N

unwrapUB(G ∈ Option (- ) ) ∈ - ≜ match G with Some(G ) ⇒ G | None ⇒ triggerUB

Fig. 11. An example to demonstrate fancy update modality.

7.2 Fancy Update

One pattern in re�nement frameworks is what we call a (memory) stealing pattern [Gu et al. 2015;
Song et al. 2023]. While the exact detail di�ers by the framework, its essence could be captured
with a minimal contrived example shown in Fig. 11.

On the left is a memory module (Mem, which o�ers a usual block-based memory model [Leroy
2006] to client modules. It manages a “memory”, a map from blocks of type L to contents of type
Option (List V), as a module private state, and provides a standard interface of memory to the clients.
For instance, calloc allocates a fresh block of the required size, initialized to 0s, and load returns
the value stored in the memory pointed to by the argument pointer, where a pointer is a pair of a
block and an o�set for the content (L×N). Also, observe that these functions utilize some degree of
non-determinism to lubricate the composition of re�nements: calloc nondeterministically chooses
the next block, and load becomes unde�ned if the pointer is not pointing to a valid location.
On the right are an implementation and a speci�cation of a Var module, which stores a single

value of type int64. The module o�ers three functions: init to initialize and get/set to get/set
the variable, respectively. The implementation )Var uses Mem module to store the data, but (Var
abstracts away the calls to Mem and directly stores the data in its module-private variable v.
Then, we have the following re�nement:

(Mem ⊕ )Var ⊑ (Mem ⊕ (Var

where Var e�ectively steals the memory block for p from Mem and put it into its module-private
state, i.e., the private variable v. The rationale behind such re�nement is that it facilitates modular
proofs by separation of concerns. In general, memory is a shared state among numerous modules,
and considering all the interactions in a monolithic manner induces unnecessary complexity—in
the case of)Var, the private storage p should be the only concern, not all the interactions happening
in the shared memory. The re�nement at hand precisely captures this intuition, separating )Var
from irrelevant interactions by abstracting it into (Var.
Looking at the above re�nement again, note that the same memory module—(Mem—appears

again on the source side. This allows multiple di�erent modules to employ the same pattern on
their veri�cation. In some sense, the module Mem is behaving like an invariant in this pattern:

6DimSum used layered re�nement in program veri�cation, not the compiler veri�cation.
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|⇛� % ≜ � ≡−∗ (� ∗ %)
fupd-mono

% ⊢ &

|⇛� % ⊢ |⇛�&

fupd-i
¤|⇛% ⊢ |⇛� %

fupd-e

|⇛� |⇛� % ⊢ |⇛� %

fupd-frame

|⇛� % ∗& ⊢ |⇛� (% ∗&)

Fig. 12. Definition of fancy update and its rules.

every module can access it in their re�nement, but they should put it back so that others can also
use it. We also note that such a pattern is not speci�c to Mem; any module with a similar structure
(i.e., key-value data storage) could employ a similar pattern.

In RCL, such a pattern is captured with a derived notion |⇛� shown in Fig. 12. This modality, |⇛� ,
is a degenerated version of the so-called fancy update modality in Iris.7 It is known [Jung et al. 2018]
(and easy to check) that this modality satis�es standard rules shown in Fig. 12. The correspondence
is interesting on its own and could potentially be useful in streamlining the composition proof of
multiple such re�nements using the stealing pattern.
For instance, consider the following case:

i : (Mem ∗ )Var ⊢ ¤|⇛( (Mem ∗ (Var )

ii : (Mem ∗ )Var2 ⊢ ¤|⇛( (Mem ∗ (Var2 )
goal : (Mem ∗ )Var ∗ )Var2 ⊢ ¤|⇛( (Mem ∗ (Var ∗ (Var2 )

Here, just (horizontally) composing i and ii would not yield the result we want. With fancy updates,
we can rephrase the problem as follows:

i : )Var ⊢ |⇛" (Var
ii : )Var2 ⊢ |⇛" (Var2

goal : )Var ∗ )Var2 ⊢ |⇛" ( (Var ∗ (Var2 )

where" is a shorthand for (Mem . With this rephrasing, we can directly (horizontally) compose i
and ii to prove the goal.

7.3 Accessor Pa�ern

Now we see the �nal pattern, so-called an accessor pattern in Iris. For the sake of space, we focus
on understanding the notion itself and its corresponding interpretation in the RCL side; speci�c
example (along with its rules) is given in [Song and Lee 2024].
The accessor pattern is de�ned as follows with ¤⊆ notation:

% ¤⊆& ≜ & ≡−∗ (% ∗ (% ≡−∗&))
Intuitively, % ¤⊆& means that & “contains” % but in a fancier way. A naive containment relation
could be de�ned as % ⊆ & ≜ ∃'. % ∗ ' ⊣⊢ & , but this is often too strong.
To see this, consider a module 1 that implements a compare method. In many module systems,

∃2. 1 = (compare ↦→ . . .) ⊕ 2 ∃2. 1 ⊒⊑ (compare ↦→ . . .) ⊕ 2

the proposition on the left would not hold, but instead, a weaker proposition on the right would
hold. In other words, splitting a module results in a pair of modules that are de�nitionally di�erent
but behaviorally equivalent (and similarly for merging). That means, in RCL:

compare ↦→ . . . ⊆ 1 compare ↦→ . . . ¤⊆ 1

the proposition on the left would not hold but the one on the right holds.

7In original Iris, fancy update modality has access to Iris invariants which is a much more powerful and sophisticated tool

than the simple pattern shown here. Iris invariants are enabled by step-indexing, which we do not consider in RCL (see:

§10).
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fundef(�) ≜ Any→ itree � Any - |2>=3 ≜ if 2>=3 holds, then - else ∅

EV (- ) ≜ {Pick} ⊎ {Take} ⊎ {Obs 5= 0A6 | 5= ∈ String, 0A6 ∈ Any}|-=Any

EL (- ) ≜ EV (- ) ⊎ {Call 5= 0A6|5= ∈ String, 0A6 ∈ Any}|-=Any ⊎ {Put 0 | 0 ∈ Any}|-=( ) ⊎ {Get}|-=Any

Mod ≜ {(init, funs) ∈ Any × (alist String fundef(EL))}

" ⊑beh "
′ ≜ Beh(") ⊆ Beh("′) " ⊑ "′ ≜ ∀� ∈ Mod . � ⊕ " ⊑beh � ⊕ "

′

ObsEvent ≜ {(Obs 5= 0A6, A4C) | 5= ∈ String, 0A6, A4C ∈ Any}

Trace
coind
= {4 :: CA | 4 ∈ ObsEvent, CA ∈ Trace} ⊎ {Term E | E ∈ Any} ⊎ {Diverge} ⊎ {Error} ⊎ {Partial}

Beh(") ∈ P(Trace) ≜ beh(concat(")) concat(") ∈ itree EV Any ≜ ...

beh ∈ itree EV Any→ P(Trace) ≜ _8. {Partial} ∪ {Diverge}|8∈div ∪

match 8 with

|| tau >>= :⇒⇒ beh(: ()) || pick(- ) >>= :⇒⇒
⋃

G∈- beh(: (G)) || take(- ) >>= :⇒⇒
⋂

G∈- beh(: (G))

|| obs 5= 0A6 >>= :⇒⇒
⋃

A4C ∈Any (Obs 5= 0A6, A4C) :: beh(: (A4C)) | ret E⇒⇒{Term E} end

div ∈ P(itree EV Any)
coind
= { tau >>= : | : () ∈ div } ∪ { pick(- ) >>= : | ∃G ∈ - . : (G) ∈ div } ∪

{ take(- ) >>= : | ∀G ∈ - . : (G) ∈ div }

Fig. 13. Definitions of the module system and behavior (copied from CCR [Song et al. 2023] and modified).

This is useful when writing a speci�cation that involves some form of polymorphism. For
example, we may want to verify a sort function that serves any client module % that implements
compare. In such cases, we can use the speci�cation like this (simpli�ed):

Sort0 ⊢ �(( Cmp . . . ¤⊆ %) −∗ ( Sort1 . . . ))

where Cmp . . . ¤⊆ % indicates that % implements expected features (See: [Song and Lee 2024]).

8 A Concrete Instance of MRA

In this section, we give a concrete instance of MRA; this gives us con�dence that the axioms of
MRA are reasonable. To this end, we start by directly borrowing the module system of CCR [Song
et al. 2023] (§8.1), and then (with some adjustments) extend it with the core operator and polysemic
semantics (§8.2). We choose this module system for several reasons: (i) it already satis�es all the
axioms except those for the core, (ii) it already supports angelic non-determinism, and (iii) its
event-based semantics (all state accesses are via events) make the de�nition of |− | straightforward.

We remark that the Fig. 13 is copied directly from CCR with the authors’ permission, and slightly
modi�ed for presentation purposes. We include this �gure for self-containedness.

8.1 Module System and Behavior

We �rst brie�y explain the module system of CCR and how contextual re�nement is de�ned. For
interested readers, a detailed explanation can be found in the third section of Song et al. [2023].

CCR’s module system heavily uses interaction trees [Xia et al. 2019], which can be understood as
a fancy small-step semantics, parameterized over an event type � : Set→ Set and a return type ) .
Interaction trees can take a silent step, return with a value of type ) , or trigger an event in � (- )
for given - . It is also a monad, and we use the usual monad notations such as >>= for bind.
In the �rst row of Fig. 13 is the set Mod, consisting of an initial value for module-private state

(init) and an association list with string (function names) as the key and function de�nitions as
the value. Functions themselves reside in fundef(EL), where the type Any can be seen as the set of
every mathematical value, and the event type EL is composed of (a) Pick/Take for (demonically/an-
gelically) nondeterministically picking a value from a given set - , (b) Obs for observable events
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such as I/O, (c) Call for a function call, and (d) Put/Get to access the module’s local state. These
events have corresponding instructions in itrees, which triggers the matching event.

The second row de�nes the contextual re�nement between Mod. Then the contextual re�nement
⊑ is de�ned as expected (and also satis�es the three composition rules), where behavioral (whole-
program) re�nement is de�ned in terms of Beh(−) explained in the last row of the �gure.

The last row de�nes the notion of trace (Trace) and de�nes the behavior of a program as the set
of possible traces. A trace is simply a �nite or in�nite sequence of observable events (in ObsEvent)
with four terminal cases: normal return, silent divergence, termination with an error, and partial
termination. Behavior of a whole program is computed by �rst concatenating all Call to the
matching function de�nitions. Then, from the resulting itree, we extract a set of possible traces,
via the predicate beh(8CA ). This predicate is a mixed inductive-coinductive de�nition, where a

solid box means a recursion and a dashed box means a corecursion.

8.2 Core Operator and Angelic Semantics

The core of a module simply takes the core of every function de�nition in the module. Then, the
core of a function de�nition is de�ned as follows:

| 5 ∈ fundef(EL) | ≜ 5 [Put _ ↦→ triggerUB, Get ↦→ triggerUB]

where it simply maps all the state access into triggerUB. This de�nition trivially satis�es mras-core-
commute, mras-core-unit and mras-core-idem. Now we are left with the most interesting axiom,
mras-core-intro. To get there, we need to extend the semantics to handle polysemic programs.
We begin with the existing semantics. When “booting” the program, the module system �rst

checks whether there are multiple de�nitions and triggers UB if so. Then it continues the execution,
and whenever a function is called, the module system �nds the corresponding de�nition with
�ndDef. We simply remove the check at the booting phase and extend �ndDef as follows:

�ndDef (prog ∈ alist String fundef(EL)) (= ∈ String) ∈ fundef(EL) ≜ unwrapUB(alist_�nd = prog)

�ndDef prog = ≜ 8← Take({8 ∈ N | prog[8] = Some(=, _)}); (prog[8])#2

Above is the original de�nition. The �ndDef looks at function de�nitions with the name = in the
whole program (prog), triggers UB if a de�nition is missing, and executes a de�nition if there is.
Below is the extended de�nition. It angelically picks (Take) a function de�nition with the matching
name and executes it; note that the semantics of Take is de�ned as an intersection (Fig. 13).
With the above extension, we have the following theorem where the proof follows the idea

described in §4.3 (details could be found in our formalization [Song and Lee 2024]):

Theorem 8.1. The extended module system satis�es all the axioms in MRA.

9 Evaluation

Our Coq development comprises 19,054 SLOC (signi�cant line of code) of Coq, where we reuse
a large portion of existing developments in CCR. We also use a recently developed FreeSim li-
brary [Cho et al. 2023].
To assess the bene�t of (I), we have extracted the essence of the most interesting composition

proof of CCR and Fair Operational Semantics [Lee et al. 2023] projects (CCR and FOS in the table,
respectively). We also assess an imaginary veri�cation scenario where both are combined together
(CCR+FOS in the table).

Here, the main tactics mean applications of “small re�nements”, and auxiliary tactics mean all
others: applications of commutativity, associativity, horizontal compositionality, vertical composi-
tionality, and re�exivity. As the number shows, the proof in RCL is much shorter. In general, the
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Table 3. Number of required tactics (in Coq) for refinement composition.

#Main Tactics #Auxiliary Tactics #Total Tactics

CCR 12 17 29

CCR@RCL 12 2 14

FOS 3 22 25

FOS@RCL 3 2 5

CCR+FOS 2 33 35

CCR+FOS@RCL 2 2 4

di�erence gets more drastic as the example gets larger. Moreover, these three proofs have the same
simple proof structure in RCL, unlike existing proofs.
We believe RCL will be especially useful in heterogeneous scenarios like CCR+FOS. Existing

re�nement frameworks tend to (if not always) impose a simple, uniform (i.e., homogeneous) style in
re�nement composition (e.g., in CAL and FOS, a client module always merges a library module in its
re�nement and in CCR, eachmodule is completely independently re�ned).While this uniformity has
been e�ective in taming some complexity of re�nement composition, more interesting veri�cation
scenarios may necessitate mixing di�erent styles, and the simplicity RCL brings will be highly
bene�cial there.

10 Related Work

We are not aware of any work that used separation logic assertions in this exact problem of com-
posing re�nements. Nevertheless, we distinguish RCL from works that share common keywords.

Separation logic. As discussed in §3.3, relational separation logics and RCL are complementary
to each other. On the other hand, there are also unary separation logics that establish safety (or
functional correctness) rather than re�nement. These are not directly relevant here because they
establish a weaker result than re�nements.

CCR [Song et al. 2023] spans both re�nement and separation logic in a novel way. The veri�cation
conditions in CCR are stated in terms of re�nement and we expect them to be easily integrable
with RCL. CCR supports reasoning for function pointers to some extent, but cannot verify Fig. 4
modularly as we did. Their veri�cation of rpt function requires a global “speci�cation table”.

Call-wise reasoning. As we have seen in §3.2, the key bene�t of � in RCL is that it allows call-
wise re�nement. In a broader context, call-wise reasoning (the callee provides multiple speci�cations,
and the caller specializes it) itself is a rather common theme across di�erent contexts: e.g., type
systems, unary logic, and relational logic all support it through a simple universal quanti�cation.
The fundamental di�erence between them and us lies in the fundamental di�erence between the
notion of types/Hoare Triples/Hoare quadruples and the notion of re�nement: only the re�nement
has the notion of vertical compositionality.

Layered re�nements and CAL. The names of the rules in Fig. 10 are modi�ed for uniformity in
presentation: layer-vcomp to CONSEQ and layer-hcomp to VCOMP. Their rule HCOMP is only used
for composing re�nements inside the module and does not appear in the granularity we presented.
layer-tcomp was missing in the original CAL and was added in its recent “modernization”.
The modernization of CAL by Koenig [2020] removes many of its limitations and provides a

much more general and elegant foundation for CAL. Its semantic domain is very close to that of
CCR (§8) in that it supports dual (both angelic and demonic) non-determinism and also algebraic
e�ects. It will be interesting future work to apply the extension we made in §8 to this setting. One
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�nal di�erence with CAL is that they use the simulation as a notion of underlying re�nement and
this appears in the notion of layered re�nement.

Game Semantics and Linear Logic. Game semantics and linear logic are very closely related,
and there has been some work that relate game semantics to re�nement. Perhaps the most relevant
to ours is RBGS (re�nement-based game semantics) [Koenig and Shao 2020]. It used game semantics
as a semantic domain for modules and imported some symbols from linear logic. However, the

object these symbols capture is fundamentally di�erent from ours. In our setting, a logical atom 0

speci�es a particular module with its function de�nitions, and in RBGS an atom denotes signature
of functions. RBGS uses bang modality (!) to duplicate function calls and di�ers from � in RCL
which concerns modules. In RCL, a�nity is an important feature and it was not discussed in RBGS
(linear logic usually does not have a�nity).

Correspondence between logic and programming. While there is a plethora of literature that
connects logic (especially with linear logic) with programming [Caires and Pfenning 2010; Frumin
et al. 2022], they tend to establish correspondence with programming features. The notion of the
module discussed in the paper is more coarse-grained and not speci�c to programming languages.

11 Conclusion and Future works

In this paper, we have identi�ed an unexpected correspondence between the task of composing

re�nements and separation logic assertions, and developed RCL with the guidance of the correspon-
dence. We believe the correspondence on its own is an idea worth spreading to the community.
We believe there is more to be discovered under the slogan that:

Separation and composition are two sides of the same coin.

We leave it as future work to further investigate derived constructs and patterns of separation
logics other than Iris [Appel 2014; Ley-Wild and Nanevski 2013] and to connect them to RCL.
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