
Tail Modulo Cons, OCaml, and Relational Separation Logic∗

CLÉMENT ALLAIN, Inria, France
FRÉDÉRIC BOUR, Tarides, France
BASILE CLÉMENT, OCamlPro, France
FRANÇOIS POTTIER, Inria, France
GABRIEL SCHERER, Inria, France and IRIF, Université Paris Cité, France

Common functional languages incentivize tail-recursive functions, as opposed to general recursive functions
that consume stack space and may not scale to large inputs. This distinction occasionally requires writing
functions in a tail-recursive style that may be more complex and slower than the natural, non-tail-recursive
definition.

This work describes our implementation of the tail modulo constructor (TMC) transformation in the OCaml
compiler, an optimization that provides stack-efficiency for a larger class of functions — tail-recursive modulo
constructors — which includes in particular the natural definition of List.map and many similar recursive
data-constructing functions.

We prove the correctness of this program transformation in a simplified setting — a small untyped calculus
— that captures the salient aspects of the OCaml implementation. Our proof is mechanized in the Coq proof
assistant, using the Iris base logic. An independent contribution of our work is an extension of the Simuliris
approach to define simulation relations that support different calling conventions. To our knowledge, this is
the first use of Simuliris to prove the correctness of a compiler transformation.

CCS Concepts: • Software and its engineering→ Compilers; Recursion; • Theory of computation→
Separation logic; Program verification; Separation logic; Program verification.

Additional Key Words and Phrases: compilation, separation logic, program verification

ACM Reference Format:
Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer. 2025. Tail Modulo Cons,
OCaml, and Relational Separation Logic. Proc. ACM Program. Lang. 9, POPL, Article 79 (January 2025), 27 pages.
https://doi.org/10.1145/3704915

1 Introduction
1.1 Prologue
“OCaml”, we teach our students, “is a functional programming language. We can write the beautiful
function List.map as follows:”
let rec map f = function

| [] → []

| x :: xs → f x :: map f xs

∗Appendices missing: A version of this paper with appendices is available at https://doi.org/10.5281/zenodo.13744623.

Authors’ Contact Information: Clément Allain, Inria, Paris, France, clement.allain@inria.fr; Frédéric Bour, Tarides, Paris,
France, frederic.bour@lakaban.net; Basile Clément, OCamlPro, Paris, France, bc@ocamlpro.com; François Pottier, Inria,
Paris, France, francois.pottier@inria.fr; Gabriel Scherer, Inria, Paris, France and IRIF, Université Paris Cité, Paris, France,
gabriel.scherer@inria.fr.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART79
https://doi.org/10.1145/3704915

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0005-2972-5181
HTTPS://ORCID.ORG/0009-0007-5268-5784
HTTPS://ORCID.ORG/0000-0002-9126-0937
HTTPS://ORCID.ORG/0000-0002-4069-1235
HTTPS://ORCID.ORG/0000-0003-1758-3938
https://doi.org/10.1145/3704915
https://doi.org/10.5281/zenodo.13744623
https://orcid.org/0009-0005-2972-5181
https://orcid.org/0009-0007-5268-5784
https://orcid.org/0000-0002-9126-0937
https://orcid.org/0000-0002-4069-1235
https://orcid.org/0000-0003-1758-3938
https://doi.org/10.1145/3704915
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704915&domain=pdf&date_stamp=2025-01-09

79:2 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

“Well, actually, this version fails with a Stack_overflow exception on large input lists. If you want
your map to behave correctly on all inputs, you should write a tail-recursive version. For this you
can use the accumulator-passing style:”

let map f li =

let rec map_ acc = function

| [] → List.rev acc

| x :: xs → map_ (f x :: acc) xs

in map_ [] f li

“Well, actually, this version works fine on large lists, but it is less efficient than the original
version. One approach is to start with a non-tail-recursive version, and switch to a tail-recursive
version for large inputs; even there you can use some manual unrolling to reduce the overhead of
the accumulator. For example, the nice Containers library does it as follows:”.

let tail_map f l =

(* Unwind the list of tuples, reconstructing the full list front−to−back.
@param tail_acc a suffix of the final list; we append tuples' content

at the front of it *)

let rec rebuild tail_acc = function

| [] → tail_acc

| (y0, y1, y2, y3, y4, y5, y6, y7, y8) :: bs →
rebuild (y0 :: y1 :: y2 :: y3 :: y4 :: y5 :: y6 :: y7 :: y8 :: tail_acc) bs

in

(* Create a compressed reverse−list representation using tuples

@param tuple_acc a reverse list of chunks mapped with [f] *)

let rec dive tuple_acc = function

| x0 :: x1 :: x2 :: x3 :: x4 :: x5 :: x6 :: x7 :: x8 :: xs →
let y0 = f x0 in let y1 = f x1 in let y2 = f x2 in

let y3 = f x3 in let y4 = f x4 in let y5 = f x5 in

let y6 = f x6 in let y7 = f x7 in let y8 = f x8 in

dive ((y0, y1, y2, y3, y4, y5, y6, y7, y8) :: tuple_acc) xs

| xs →
(* Reverse direction, finishing off with a direct map *)

let tail = List.map f xs in

rebuild tail tuple_acc

in

dive [] l

let direct_depth_default_ = 1000

let map f l =

let rec direct f i l = match l with

| [] → []

| [x] → [f x]

| [x1;x2] →
let y1 = f x1 in

[y1; f x2]

| [x1;x2;x3] →
let y1 = f x1 in

let y2 = f x2 in

[y1; y2; f x3]

| _ when i=0 → tail_map f l

| x1::x2::x3::x4::l' →
let y1 = f x1 in

let y2 = f x2 in

let y3 = f x3 in

let y4 = f x4 in

y1 :: y2 :: y3 :: y4 :: direct f (i−1) l'

in

direct f direct_depth_default_ l

At this point, unfortunately, some students leave the class and never come back.
We propose a new feature for the OCaml compiler, an explicit, opt-in “Tail Modulo Cons”

transformation, to retain our students. After the first version (or maybe, if we are teaching an
advanced class, after the second version), we could show them the following version:

let[@tail_mod_cons] rec map f = function

| [] → []

| x :: xs → f x :: map f xs

This version is as fast as the simple implementation, tail-recursive, and easy to write.
The catch, of course, is to teach when this [@tail_mod_cons] annotation can be used. Maybe we

would not show it at all, and pretend that the direct map version with let y is fine. This would be a
much smaller lie than it currently is, a [@tail_mod_cons]-sized lie.

Finally, experts should be very happy. They know about all these versions, but they do not have
to write them by hand anymore. Have a program perform (some of) the program transformations
that they are currently doing manually.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

https://github.com/c-cube/ocaml-containers

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:3

1.2 TMC Transformation Example
A function call is in tail position within a function definition if the definition has “nothing to do”
after evaluating the function call – the result of the call is the result of the whole function at this
point of the program. (A precise definition will be given in Section 3.2.) A function is tail recursive
if all its recursive calls are tail calls.

In the naive definition of map, the recursive call is not in tail position: after computing the result
of map f xs we still have to compute the final list cell, y :: ■. We say that a call is tail modulo cons
when the remaining work is formed of data constructors only, such as (::) here.

Other datatype constructors may be used; this is also tail-recursive modulo cons:

let[@tail_mod_cons] rec tree_of_list = function

| [] → Empty

| x :: xs → Node(Empty, x, tree_of_list xs)

The TMC transformation produces an equivalent function in destination-passing style where
the calls in tail modulo cons position have been turned into tail calls. In particular, for map it gives
a tail-recursive function, which runs in constant stack space; other list functions also become
tail-recursive. This works for other data types as well, such as binary trees, but in this case some
recursive calls may remain non-tail-recursive.

For map, our transformation produces the following code:

let rec map f = function

| [] → []

| x::xs →
let y = f x in

let dst = y :: ■ in

map_dps dst 1 f xs;

dst

and map_dps dst i f = function

| [] →
dst.i← []

| x::xs →
let y = f x in

let dst' = y :: ■ in

dst.i← dst';

map_dps dst' 1 f xs

The transformed code has two variants of the map function. The map_dps variant is in destination-
passing style: it expects additional parameters that specify a memory location, a destination, and
writes its result to this destination instead of returning it. It is tail-recursive, and it performs a single
traversal of the list. The map variant provides the same interface as the non-transformed function:
we say that it is in direct style. It is not tail-recursive, but it does not call itself recursively, it calls
the tail-recursive map_dps on non-empty lists.1
The key idea of the transformation is that the expression y :: map f xs, which contained a

non-tail-recursive call, is transformed into: first create a partial list cell, written y :: ■, then call
map_dps, asking it to write its result in the position of the ■ in the the partial cell. The recursive call
thus takes place after the cell creation (instead of before), in tail-recursive position in the map_dps

variant. In the direct variant, the destination cell dst is returned after the call.
The transformed code is pseudo-OCaml: it is not a valid OCaml program. We use a magical ■

constant, and our notation dst.i← ... to update constructor parameters in-place is also invalid
in source programs. The transformation is implemented on a lower-level, untyped intermediate
representation of the OCaml compiler (Lambda), where those operations do exist. The OCaml
type system is not expressive enough to type-check the transformed program: the list cell is only
partially initialized at first, each partial cell is mutated exactly once, and in the end the whole
1The direct-style version of map we produce is not recursive. But in the general case, the two functions produced may call
each other, so we always produce a mutually-recursive block.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:4 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

result is returned as an immutable list. Some type systems are expressive enough to represent this
transformed code, notably Mezzo [Balabonski, Pottier and Protzenko 2016], based on a permission
system inspired by separation logic [O’Hearn 2019], or the linear types used in Minamide [1998].

TMC has been first implemented in Lisp [Friedman andWise 1975; Risch 1973] and is well-known
in the Lisp and Scheme implementation communities, but less well-known in other functional lan-
guages despite a few implementations[Didrich, Fett, Gerke, Grieskamp and Pepper 1994; Doeraene
and Van Roy 2013]. A notable recent implementation (simultaneous with our work) is the one in
Koka [Leijen and Lorenzen 2023], which was carefully designed to support multishot delimited
continuations. The TMC transform is arguably un-necessary in Prolog, where unification variables
make it easy and idiomatic to express the transformed program, at the cost of a constant-factor
overhead. A variant of TMC, which transforms recursive calls in tail-position modulo associative
operations (rather than data constructors) into accumulator-passing style, is in gcc and clang,
allowing them to compile a naive definition of factorial into a loop.

The first main contribution of our work is an implementation of TMC in the OCaml compiler as
an on-demand program transformation, merged in November 2021. We describe the non-trivial
design choices in terms of user interface, and evaluate performance through micro-benchmarks.
Various functions in the standard library and third-party code bases have been rewritten to use
it, to become tail-recursive, gain in performance, or (when an efficient but complex tail-recursive
version was used) simplify considerably the implementation.

The secondmain contribution of this work is a mechanized proof of correctness for the core of this
transformation on a small untyped calculus. We establish that for any input source program there is
a termination-preserving behavioral refinement between the source program and the corresponding
transformed program: any behavior of the transformed program, be it converging, diverging or
stuck, is a behavior of the source program. To our knowledge this is the first verification of the
TMC transformation in an untyped setting.

Our proof technique is to define a relational program logic for our small untyped calculus, to
show the correctness of the TMC transformation using this program logic, and to get the behavioral
refinement by proving adequacy of our program logic. We build on top of Simuliris [Gäher,
Sammler, Spies, Jung, Dang, Krebbers, Kang and Dreyer 2022], a framework for simulations in
separation logic over the Iris base logic. The use of separation logic nicely captures certain aspects
of the proof argument, in particular the fact that the the destination-passing-style function uniquely
owns the destination location that it receives.
To our knowledge, previous works on Simuliris have verified examples of interesting opti-

mizations and program transformations, by formally proving relations between pairs of concrete
programs. Our work may be the first proof of correctness of a program transformation (as a function
or relation) using a simulation-based approach, establishing correctness for all input programs. (Ear-
lier Iris work proves program transformations using logical relations, see for example Tassarotti,
Jung and Harper [2017].)

At this level of generality, we found that the Simuliris simulation is not expressive enough to
reason about transformations that introduce new function calling conventions. We generalize the
Simuliris handling of function calls by parameterizing the simulation relation over an abstract
protocol, inspired by de Vilhena and Pottier [2021]. This sub-contribution of our work is independent
from the TMC transformation and our small calculus, and we tried to express it in general terms,
beyond the specific needs of TMC. In particular, we believe that Iris-based relational separation
logics could be a powerful yet pleasant proof technique for compiler verification.

The core of the soundness proof is the specification of the two variants of each TMC-transformed
function — direct style and destination-passing style. It concisely conveys the essence of destination-
passing style: computing the same thing and writing it to an owned destination. For instance, to

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:5

Index ∋ 𝑖 F 0 | 1 | 2
B ∋ 𝑏 F true | false
Tag ∋ 𝑡

L ∋ ℓ

F ∋ 𝑓

X ∋ 𝑥,𝑦

Val ∋ 𝑣,𝑤 F () | 𝑖 | 𝑡 | 𝑏 | ℓ | @𝑓

Def ∋ 𝑑 F rec 𝜆𝑥. 𝑒

Prog ∋ 𝑝 B F
fin
⇀ Def

State ∋ 𝜎 B L
fin
⇀ Val

Config ∋ 𝜌 B Expr × State

Expr ∋ 𝑒 F 𝑣

| 𝑥 | let 𝑥 = 𝑒1 in 𝑒2 | 𝑒1 𝑒2
| 𝑒1 = 𝑒2
| if 𝑒0 then 𝑒1 else 𝑒2
| { 𝑡, 𝑒1, 𝑒2 } | [𝑡, 𝑒1, 𝑒2]
| 𝑒1.(𝑒2) | 𝑒1.(𝑒2)← 𝑒3

Ectx ∋ 𝐸 F □
| let 𝑥 = 𝐸 in 𝑒2 | 𝑒1 𝐸 | 𝐸 𝑣2
| 𝑒1 = 𝐸 | 𝐸 = 𝑣2
| if 𝐸 then 𝑒1 else 𝑒2
| 𝑒1.(𝐸) | 𝐸.(𝑣2)
| 𝑒1.(𝑒2)← 𝐸 | 𝑒1.(𝐸)← 𝑣3
| 𝐸.(𝑣2)← 𝑣3

Fig. 1. DataLang syntax

give a taste of the formalism, the specification of the variants of map looks as follows:
{𝑣𝑠 ≈ 𝑣𝑡 } @map (@𝑓 , 𝑣𝑠) ≳ @map (@𝑓 , 𝑣𝑡) {≈}

{𝑣𝑠 ≈ 𝑣𝑡 ∗ (ℓ + 𝑖) ↦→ ■} @map (@𝑓 , 𝑣𝑠) ≳ @map_dps ((ℓ, 𝑖), @𝑓 , 𝑣𝑡)
{
𝑣 ′𝑠 , (). ∃ 𝑣 ′𝑡 . (ℓ + 𝑖) ↦→ 𝑣 ′𝑡 ∗ 𝑣 ′𝑠 ≈ 𝑣 ′𝑡

}
If two input lists are related, then calling the map function or its direct-style translation will return
related outputs. Furthermore, if we call the destination-passing-style version on a partial block that
we own, we will get a source value 𝑣 ′𝑠 and a unit value (), and a target value 𝑣 ′𝑡 related to 𝑣 ′𝑠 will be
written in the block.

To sum up, our main contributions are:
(1) an implementation of the TMC transformation in the OCaml compiler, with a discussion of

the user interface, a performance evaluation, and a survey of its early usage;
(2) a mechanized proof of soundness for an idealized TMC transformation on a small calculus,

using a relational separation program logic;
(3) a generalization of the Simuliris handling of function calls with abstract protocols to reason

about different calling conventions.

Remarks. A preliminary, work-in-progress version of this work was presented in a previous
publication at a national conference [Bour, Clément and Scherer 2021].

2 TMC on an Idealized Language
In this section, we formalize the “tail modulo cons” (TMC) transformation in an idealized language,
DataLang, that is expressive enough to account for the main aspects of TMC but does not support
all features of OCaml. Our proof of correctness covers this idealized fragment. We intentionally
keep the presentation very close to our Coq development, which can be referred to for full details.

2.1 Language
The syntax of DataLang is given in Figure 1 and its semantics in Figure 3. We also introduce
syntactic sugar in Figure 2, in particular shallow pattern-matching on lists. Going back to our
motivating example, we can define the map function on lists as in Figure 4.
DataLang is an untyped sequential calculus with mutable state. A DataLang program 𝑝 is a

finite mapping from function names 𝑓 ∈ F to mutually-recursive definitions𝑑 , which are themselves

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:6 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

𝑒1 ; 𝑒2 B let 𝑥 = 𝑒1 in 𝑒2
(𝑒1, 𝑒2) B { PAIR, 𝑒1, 𝑒2 }

let (𝑥1,𝑥2) = 𝑒1 in 𝑒2 B let 𝑦 = 𝑒1 in

let 𝑥1 = 𝑦.(1) in

let 𝑥2 = 𝑦.(2) in

𝑒2

rec 𝜆(𝑥1,𝑥2). 𝑒 B rec 𝜆𝑦.

let (𝑥1,𝑥2) = 𝑦 in

𝑒

[] B ()

𝑒1 :: 𝑒2 B {CONS, 𝑒1, 𝑒2 }

match 𝑒0 with | []→ 𝑒1 | 𝑥 :: xs→ 𝑒2 B let 𝑦 = 𝑒0 in if 𝑦 = [] then 𝑒1
else let (𝑥, xs) = 𝑦 in 𝑒2

■ B ()

Fig. 2. DataLang syntactic sugar

− 𝑝−→
head
− : Config→ Config→ Prop − 𝑝−→ − : Config→ Config→ Prop

StepLet
(let 𝑥 = 𝑣 in 𝑒, 𝜎) 𝑝−→

head
(𝑒 [𝑥\𝑣], 𝜎)

StepCall
𝑝 [𝑓] = (rec 𝜆𝑥. 𝑒)

(@𝑓 𝑣, 𝜎) 𝑝−→
head
(𝑒 [𝑥\𝑣], 𝜎)

StepBlock1

({ 𝑡, 𝑒1, 𝑒2 }, 𝜎)
𝑝−→

head

©­«
let 𝑥1 = 𝑒1 in

let 𝑥2 = 𝑒2 in

[𝑡,𝑥1,𝑥2]
, 𝜎
ª®¬

StepBlock2

({ 𝑡, 𝑒1, 𝑒2 }, 𝜎)
𝑝−→

head

©­«
let 𝑥2 = 𝑒2 in

let 𝑥1 = 𝑒1 in

[𝑡,𝑥1,𝑥2]
, 𝜎
ª®¬

StepBlockDet
∀ 𝑖 ∈ Index, ℓ + 𝑖 ∉ dom(𝜎)

([𝑡, 𝑣1, 𝑣2], 𝜎)
𝑝−→

head
(ℓ, 𝜎 [ℓ ↦→ 𝑡, 𝑣1, 𝑣2])

StepLoad
𝜎 [ℓ + 𝑖] = 𝑣

(ℓ.(𝑖), 𝜎) 𝑝−→
head
(𝑣, 𝜎)

StepStore
ℓ + 𝑖 ∈ dom(𝜎)

(ℓ.(𝑖)← 𝑣, 𝜎) 𝑝−→
head
((), 𝜎 [ℓ + 𝑖 ↦→ 𝑣])

StepEctx
(𝑒, 𝜎) 𝑝−→

head
(𝑒′, 𝜎 ′)

(𝐸 [𝑒], 𝜎) 𝑝−→ (𝐸 [𝑒′], 𝜎 ′)

Fig. 3. DataLang semantics (excerpt)

map B rec 𝜆(f, xs) = match xs with

| [] → []

| x :: xs → let y = f x in y :: @map (f, xs)

Fig. 4. Natural implementation of map in DataLang

functions whose body is written rec 𝜆𝑥 . 𝑒 . Functions have a single parameter for simplicity, with
pairs used to pass several values.
DataLang has Booleans 𝑏 ∈ {true, false}, an if-then-else construct, and a runtime equality

test2 between (untyped) values 𝑒1 = 𝑒2.
2We check physical equality on locations / pointers, and primitive equality between primitive types, similarly to the eqv?
predicate of Scheme. Primitive values of distinct types, for example integers and Booleans, are always considered different.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:7

DataLang is first-order in the same sense that C is (with function pointers): it does not feature
general lambda expressions, its programs correspond to closure-converted or lambda-lifted source
programs.3 Functions names 𝑓 can be turned into values written @𝑓 , to be used directly in function
calls or as parameters to higher-order functions.
To express constructors, DataLang features mutable memory blocks with an abstract tag

(𝑡 ∈ Tag), and two fields which are arbitrary values (𝑒1, 𝑒2). One can allocate a block with { 𝑡, 𝑒1, 𝑒2 },
access its fields with 𝑒1.(𝑒2) and modify them with 𝑒1.(𝑒2)← 𝑒3. Allocation returns a location
ℓ ∈ L, which may not appear in source programs.
The evaluation order of subexpressions 𝑒1 and 𝑒2 in { 𝑡, 𝑒1, 𝑒2 } is unspecified as in OCaml.

This is crucial to allow the behavior-preserving optimization of more programs, as the TMC
transformation may affect the evaluation order of subterms of data constructors. To model this
in the semantics, we introduce a separate, deterministic block construction [𝑡, 𝑒1, 𝑒2] which
cannot appear in source programs. A block expression { 𝑡, 𝑒1, 𝑒2 } first reduces (in a nondeter-
ministic manner) to either let 𝑥1 = 𝑒1 in let 𝑥2 = 𝑒2 in [𝑡,𝑥1,𝑥2] through StepBlock1 or to
let 𝑥2 = 𝑒2 in let 𝑥1 = 𝑒1 in [𝑡,𝑥1,𝑥2] through StepBlock2. [𝑡, 𝑣1, 𝑣2] performs the allocation
through StepBlockDet.
The values in DataLang are functions @𝑓 , locations ℓ of allocated blocks, Booleans 𝑏, tags 𝑡

(taken in an arbitrary, denumerable set), the unit value (), and indices 𝑖 ∈ {0, 1, 2} inside blocks.
(Our transformation never mutates block tags, nor do OCaml programs, but Mezzo supports it.)

On top of these basic language features, Figure 2 introduces syntactic sugar for pairs (𝑒1, 𝑒2)
as blocks with a specific tag PAIR, for decomposing blocks in let-bindings (let (𝑥,𝑦) = 𝑒1 in 𝑒2)
and in arguments of toplevel functions (𝑓 ↦→ rec 𝜆(𝑥,𝑦). 𝑒), and for (untyped) lists by defining
the empty list [] as (), and for (mutable) cons-cells as blocks with a specific tag CONS. Pattern-
matching on lists can be expressed by comparing the list with [], using our block-deconstructing
let (which ignores the tag) to deconstruct cons-cells.
As a side note, we use named expression variables here but the Coq mechanization actually

adopts de Bruijn syntax, which is better suited to define transformations involving binders. More
precisely, our formalization relies on the Autosubst library [Schäfer, Tebbi and Smolka 2015]. Our
definitions respect 𝛼-equivalence on term variables 𝑥,𝑦: we implicitly assume any term variable in
bound position to be chosen distinct from all other variables in context. Function names 𝑓 are not
𝛼-renamed, as the transformation relates names in the source and target of the transformation.

2.2 Transformation
We now define the TMC transformation as a relation 𝑝𝑠 ⇝ 𝑝𝑡 between programs and their
transformation. The relation is total, in the sense that anyDataLang program 𝑝𝑠 can be related to at
least one transformed program 𝑝𝑡 . It is not deterministic: for each input program it captures a (finite)
set of admissible transformations, which we all prove valid. This non-determinism captures several
choices that have to be done by the user through a user interface to control the transformation, or
by the compiler implementation, influencing performance and evaluation order of the result. In
this section, we do not describe how these choices are resolved – there is a large design space. We
present the choices we made for OCaml compiler in Section 3.

Transforming a DataLang program 𝑝 can be described in three independent parts.

1. Choosing a subset of toplevel functions to be TMC-transformed. For each such function 𝑓 , we
also require a fresh function name 𝜉 [𝑓] (that is not defined in 𝑝𝑠) that will be the destination-passing
style (DPS) version of 𝑓 in the transformed program 𝑝𝑡 .

3The usual definition of TMC that we implement and formalize is essentially first-order.See Appendix A.2.3.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:8 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

𝑝𝑠 ⇝ 𝑝𝑡 B ∃ 𝜉 .
∧ 

dom(𝜉) ⊆ dom(𝑝𝑠)
dom(𝑝𝑡) = dom(𝑝𝑠) ∪ codom(𝜉)
∀ 𝑓 ∈ dom(𝑝𝑠). 𝑝𝑠 [𝑓]

𝜉
⇝
dir
𝑝𝑡 [𝑓]

∀(𝑓 ↦→ 𝑓dps) ∈ 𝜉, 𝑝𝑠 [𝑓]
𝜉
⇝
dps
𝑝𝑡 [𝑓dps]

Fig. 5. TMC transformation

−
𝜉
⇝
dir
− : Def → Def → Prop −

𝜉
⇝
dir
− : Expr→ Expr→ Prop

DirDef

𝑒𝑠
𝜉
⇝
dir
𝑒𝑡

rec 𝜆𝑥 . 𝑒𝑠
𝜉
⇝
dir

rec 𝜆𝑥 . 𝑒𝑡

DirVal

𝑣
𝜉
⇝
dir
𝑣

DirVar

𝑥
𝜉
⇝
dir
𝑥

DirLet

𝑒𝑠1
𝜉
⇝
dir
𝑒𝑡1 𝑒𝑠2

𝜉
⇝
dir
𝑒𝑡2

let 𝑥 = 𝑒𝑠1 in 𝑒𝑠2
𝜉
⇝
dir

let 𝑥 = 𝑒𝑡1 in 𝑒𝑡2

DirCall

𝑒𝑠1
𝜉
⇝
dir
𝑒𝑡1 𝑒𝑠2

𝜉
⇝
dir
𝑒𝑡2

𝑒𝑠1 𝑒𝑠2
𝜉
⇝
dir
𝑒𝑡1 𝑒𝑡2

DirBlock

𝑒𝑠1
𝜉
⇝
dir
𝑒𝑡1 𝑒𝑠2

𝜉
⇝
dir
𝑒𝑡2

{ 𝑡, 𝑒𝑠1, 𝑒𝑠2 }
𝜉
⇝
dir

{ 𝑡, 𝑒𝑡1, 𝑒𝑡2 }

DirBlockDPS1

(𝑥, 1, 𝑒𝑠1)
𝜉
⇝
dps
𝑒𝑡1 𝑒𝑠2

𝜉
⇝
dir
𝑒𝑡2

{ 𝑡, 𝑒𝑠1, 𝑒𝑠2 }
𝜉
⇝
dir

let 𝑥 = { 𝑡,■, 𝑒𝑡2 } in

𝑒𝑡1 ; 𝑥

DirBlockDPS2

𝑒𝑠1
𝜉
⇝
dir
𝑒𝑡1 (𝑥, 2, 𝑒𝑠2)

𝜉
⇝
dps
𝑒𝑡2

{ 𝑡, 𝑒𝑠1, 𝑒𝑠2 }
𝜉
⇝
dir

let 𝑥 = { 𝑡, 𝑒𝑡1,■ } in

𝑒𝑡2 ; 𝑥

Fig. 6. Direct TMC transformation (omitting congruence rules similar to DirCall)

Formally, the subset is determined by the domain of the renaming function 𝜉 , which is passed as
a parameter to the auxiliary transformations that we describe next.

2. For each function 𝑓 defined in 𝑝 , computing its direct transform. We introduce in Figure 6 the

relations 𝑑𝑠
𝜉
⇝
dir
𝑑𝑡 for definitions and 𝑒𝑠

𝜉
⇝
dir
𝑒𝑡 for expressions. 𝑑𝑠

𝜉
⇝
dir
𝑑𝑡 expresses that: 1) 𝑑𝑡 has the

same calling convention as 𝑑𝑠 . 2) The body of 𝑑𝑡 is the direct transform of the body of 𝑑𝑠 . 𝑒𝑠
𝜉
⇝
dir
𝑒𝑡

expresses that 𝑒𝑡 is the direct transform of 𝑒𝑠 . Intuitively: 𝑒𝑡 computes the same thing as 𝑒𝑠 .
The direct-style transform corresponds to the case where we do not have a block that can

serve as a destination: this version is used in an arbitrary calling context, not necessarily under a
constructor. Most rules are straightforward congruences – we recursively transform subexpressions
and preserve the term constructor. We omit the rules for loads 𝑒1.(𝑒2), stores 𝑒1.(𝑒2)← 𝑒3, and
the deterministic blocks [𝑡, 𝑒1, 𝑒2] which are such simple congruences, just like calls 𝑒1 𝑒2.
The key cases are for a block construct { 𝑡, 𝑒1, 𝑒2 }. We can use this block as a destination,

and switch to the destination-passing-style calling convention – these rules are a source of non-
determinism, and the only places in the direct-style transformation where destination-passing-style
is introduced. DirBlock is a simple congruence rule that keeps both arguments in direct style. The

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:9

−
𝜉
⇝
dps
− : Def → Def → Prop −

𝜉
⇝
dps
− : Expr × Expr × Expr→ Expr→ Prop

DPSDef

(𝑥dst, 𝑥idx, 𝑒𝑠)
𝜉
⇝
dps
𝑒𝑡

rec 𝜆𝑥. 𝑒𝑠
𝜉
⇝
dps

rec 𝜆((𝑥dst,𝑥idx),𝑥). 𝑒𝑡

DPSLet

𝑒𝑠1
𝜉
⇝
dir
𝑒𝑡1 (𝑒dst, 𝑒idx, 𝑒𝑠2)

𝜉
⇝
dps
𝑒𝑡2(

𝑒dst, 𝑒idx,

let 𝑥 = 𝑒𝑠1 in 𝑒𝑠2

)
𝜉
⇝
dps

let 𝑥 = 𝑒𝑡1 in 𝑒𝑡2

DPSIf

𝑒𝑠0
𝜉
⇝
dir
𝑒𝑡0 (𝑒dst, 𝑒idx, 𝑒𝑠1)

𝜉
⇝
dps
𝑒𝑠2 (𝑒dst, 𝑒idx, 𝑒𝑠2)

𝜉
⇝
dps
𝑒𝑡2(

𝑒dst, 𝑒idx,

if 𝑒𝑠0 then 𝑒𝑠1 else 𝑒𝑠2

)
𝜉
⇝
dps

if 𝑒𝑡0 then 𝑒𝑡1 else 𝑒𝑡2

DPSBlock1

(𝑥, 1, 𝑒𝑠1)
𝜉
⇝
dps
𝑒𝑡1 𝑒𝑠2

𝜉
⇝
dir
𝑒𝑡2(

𝑒dst, 𝑒idx,

{ 𝑡, 𝑒𝑠1, 𝑒𝑠2 }

)
𝜉
⇝
dps

let 𝑥 = { 𝑡,■, 𝑒𝑡2 } in

𝑒dst.(𝑒idx)← 𝑥 ; 𝑒𝑡1

DPSBlock2

𝑒𝑠1
𝜉
⇝
dir
𝑒𝑡1 (𝑥, 2, 𝑒𝑠2)

𝜉
⇝
dps
𝑒𝑡2(

𝑒dst, 𝑒idx,

{ 𝑡, 𝑒𝑠1, 𝑒𝑠2 }

)
𝜉
⇝
dps

let 𝑥 = { 𝑡, 𝑒𝑡1,■ } in

𝑒dst.(𝑒idx)← 𝑥 ; 𝑒𝑡2

DPSCall

𝑓 ∈ dom(𝜉) 𝑒𝑠
𝜉
⇝
dir
𝑒𝑡

(𝑒dst, 𝑒idx, @𝑓 𝑒𝑠)
𝜉
⇝
dps

@𝜉 [𝑓] ((𝑒dst, 𝑒idx), 𝑒𝑡)

DPSBase

𝑒𝑠
𝜉
⇝
dir
𝑒𝑡

(𝑒dst, 𝑒idx, 𝑒𝑠)
𝜉
⇝
dps
𝑒dst.(𝑖)← 𝑒𝑡

Fig. 7. Destination-passing style TMC transformation of definitions and expressions (in full)

rules (DirBlockDPS1, DirBlockDPS2) choose a block argument to be evaluated in destination-
passing style. (It is also possible to transform both arguments in DPS style, and we include extra
rules for this in our formalization.)

The terms produced by these rules proceed as follows: 1) Partially initialize a new memory block,
with a hole for one of their arguments. 2) Evaluate the DPS transformation of the corresponding
argument, passing the uninitialized field as destination. 3) Return the now fully initialized block.

An implementation would typically determine which subexpression would benefit from destina-
tion-passing style, that is, contains function calls @𝑓 𝑒 in tail position (relatively to the subexpression)
that have a destination-passing variant 𝜉 [𝑓].

3. For each TMC-transformed function 𝑓 , choosing a destination-passing-style transform. We intro-

duce in Figure 7 the relations 𝑑𝑠
𝜉
⇝
dps
𝑑𝑡 for definitions and (𝑒dst, 𝑒idx, 𝑒𝑠)

𝜉
⇝
dps
𝑒𝑡 for expressions.

𝑑𝑠
𝜉
⇝
dps
𝑑𝑡 expresses that: 1) The function defined in 𝑑𝑡 has an additional parameter representing

the destination where it must write its result. This parameter is a pair of the location of a memory
block 𝑥dst along with the index 𝑥idx of a particular field in this block. 2) The body of 𝑑𝑡 is a DPS
transform of the body of 𝑑𝑠 under the given destination.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:10 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

(𝑒dst, 𝑒idx, 𝑒𝑠)
𝜉
⇝
dps
𝑒𝑡 expresses that 𝑒𝑡 is a DPS transform of 𝑒𝑠 under destination (𝑒dst, 𝑒idx). Intu-

itively, this means 𝑒𝑡 computes the same thing as 𝑒𝑠 but writes it into the destination instead of
returning it. We will formalize this intuition in Section 4.

Note that the rule DPSDef, which relates the two judgments, uses the expression-level relation

(
𝜉
⇝
dps
) with a term variable 𝑥idx to represent the index, not just a constant index 1 or 2 as in block

rules. These are the only two sort of expressions used to represent offsets in the transformation.
In the direct-style relation, congruence rules apply the same direct-style transformation to all

subexpressions. The congruence-like rule of the DPS relation, for example DPSLet and DPSIf, are
different. They apply the DPS transformation to sub-expressions which are in tail position relative
to the expression, and the direct-style transformation to all other subexpressions. The if-then-else
construct has two different subexpressions in tail position, only one of them is evaluated at runtime.
The rules DPSBlock1 and DPSBlock2 correspond to the rules DirBlockDPS1 and DirBlock-

DPS2 in the direct-style transformation, but the transformed code is different. Consider the transla-
tion of (𝑒dst, 𝑒idx, { 𝑡, 𝑒𝑠1, 𝑒𝑠2 }) into let 𝑥 = { 𝑡, 𝑒𝑡1,■ } in 𝑒dst.(𝑒idx)← 𝑥 ; 𝑒𝑡2 by DirBlockDPS2.
First we create a new destination 𝑥 , with a hole in second position. Then, instead of computing
the corresponding subterm, we write this new destination 𝑥 into the current destination (𝑒dst, 𝑒idx).
Finally we evaluate 𝑒𝑡2, which is the DPS transform of the subexpression 𝑒𝑠2, with the destination
(𝑥, 2). Notice that 𝑒𝑡2 is in tail position relative to the transformed expression, while it was not in
tail position in the source expression. This is the key step of the TMC transformation, that turns
non-tail calls into tail calls. Rule DirBlockDPS2 puts the second subterm in tail position, and
DirBlockDPS1 puts the first subterm in tail position. It is not always obvious which rule should be
applied. In the case of lists as in our running example y :: map f xs, we want the second subterm
in tail position, so the transformation only uses DirBlockDPS2. But consider a map function on
binary trees Node(map f left, map f right): the implementation must choose one subterm to put
in tail position and another to keep in non-tail position.

The rule DPSCall applies only to calls @𝑓 𝑒𝑠 to a known function 𝑓 , on the condition that a DPS
variant has been generated for 𝑓 : 𝑓 ∈ dom(𝜉). In this case, the function call can be compiled to a call
to the DPS variant 𝜉 [𝑓], transferring to the callee the responsibility to write to the destination. This
is the case where the DPS transform is beneficial, as this transformation may turn a non-tail-call
into a tail-call – when it occurs under a block, in a subterm that was moved to tail position. This
rule is selected for map in our y :: map f xs example.

Finally, there is a catch-all rule DPSBase that applies in any case, in particular whenever none of
the other rules can be selected. This case trivially realizes the DPS calling convention by evaluating
the subterm to a result and writing this result in the desired destination. This is what happens in
the base case of map_dps, where the empty list [] is transformed into dst.(idx)← [].

2.3 Realizing the Relation as a Function
Our Coq formalization includes a function that takes an input program and outputs a related
program, following the one-pass implementation approach that we introduced in the OCaml
compiler(see Appendix A.4).

3 OCaml Implementation
For reasons of space, we moved some of the content in this section to appendices: Appendix A.1
discusses alternative language implementation techniques that do not require TMC. Appendix
A.2 describes how the OCaml compiler decides which calls to optimize, and requires mandatory
disambiguation hints from the user in case of ambiguity. Appendix A.3 provides a summary of the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:11

history of our implementation (started in 2015, restarted in 2020, merged in 2021). Appendix A.4
explains that implementing the transformation requires a bit of care as a naive implementation is
quadratic in function size. We use an applicative functor to structure a single-pass implementation
that remains nicely compact and readable. Appendix A.5 surveys the adoption of the TMC trans-
formation in the standard library, and in third-party OCaml code bases, that happened since the
feature was released in 2022.

3.1 Examples

let[@tail_mod_cons] rec filter p =

function

| [] → []

| x :: xs →
if p x

then x :: filter p xs

else filter p xs

let[@tail_mod_cons] rec merge cmp l1 l2 =

match l1, l2 with

| [], l | l, [] → l

| h1 :: t1, h2 :: t2 →
if cmp h1 h2 <= 0

then h1 :: merge cmp t1 l2

else h2 :: merge cmp l1 t2

TMC is not useful only for lists or other “linear” data types, with at most one recursive occurrence
of the datatype in each constructor. An example follows.

A non-example. Consider a map function on binary trees:

let[@tail_mod_cons] rec map f = function

| Leaf v → Leaf (f v)

| Node(t1, t2) → Node(map f t1, (map[@tailcall]) f t2)

In this function, there are two recursive calls, but only one of them can be optimized; we used the
[@tailcall] attribute to direct our implementation to optimize the call to the right child, as we will
discuss later. This is a bad example of TMC usage in most cases, given that
• If the tree is arbitrary, there is no reason that it would be right-leaning rather than left-leaning.
Making only the right-child calls tail-calls does not protect us from stack overflows.
• If the tree is known to be balanced, then in practice the depth is probably very small in both
directions, so the TMC transformation is not necessary to have a well-behaved function.

Interesting non-linear examples. There are interesting examples of TMC-transformation on func-
tions operating on tree-like data structures, when there are natural assumptions about which
child is likely to contain a deep subtree. The OCaml compiler itself contains a number of them;
consider for example the following function from the Cmm module, one of its lower-level program
representations:

let[@tail_mod_cons] rec map_tail f = function

| Clet(id, exp, body) →
Clet(id, exp, map_tail f body)

| Cifthenelse(cond, ifso, ifnot) →
Cifthenelse(cond, map_tail f ifso, (map_tail[@tailcall]) f ifnot)

| Csequence(e1, e2) →
Csequence(e1, map_tail f e2)

| Cswitch(e, tbl, el) →
Cswitch(e, tbl, Array.map (map_tail f) el)

[...]

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:12 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

TailCtxFrame ∋ 𝑇 F let 𝑥 = 𝑒 in □ | if 𝑒 then □ else □
ConsCtxFrame ∋ 𝐾 F { 𝑡, 𝑒,□ } | { 𝑡,□, 𝑒 }
TMCFrame ∋ 𝑈 F 𝑇 | 𝐾
TailCtx ∋ 𝑇 ∗ F □ | 𝑇 | 𝑇 ∗ [𝑇 ∗]
TMCCtx ∋ 𝑈 ∗ F □ | 𝑈 | 𝑈 ∗ [𝑈 ∗]

Fig. 8. DataLang contexts for optimizable calls

This function is traversing the “tail” context of an arbitrary program term – a meta-example! The
Cifthenelse node acts as our binary-node constructor. We do not know which side is likely to be
larger, so TMC is not so interesting. The recursive calls for Cswitch are not in TMC position. But on
the other hand the Clet, Csequence do benefit from the TMC transformation: while they have several
recursive subtrees, they are in practice only deeply nested in the direction that is turned into a
tailcall by the transformation. The OCaml compiler does sometimes encounter machine-generated
programs with a unusually long sequence of either constructions, and the TMC transformation
may very well avoid a stack overflow in this case.
Another example would be #9636, a patch to the OCaml compiler proposed in June 2020 by

Mark Shinwell, to get a partially-tail-recursive implementation of the “Common Subexpression
Elimination” (CSE) pass through a manual continuation-passing-style transform. Xavier Leroy
remarked that the existing implementation in fact fits the TMC fragment. Not all recursive calls
become tail-calls (this would require a more powerful transformation or a longer, less readable
patch), but the behavior of TMC on the unchanged code matches the tail-call-ness proposed in the
human-written patch.

3.2 Specifying Which Calls are in TMC Position
To reason about the stack usage of their programs, users must understand which calls are in
tail-modulo-cons position. Informally, they are the calls placed under any composition of either
tail-recursive or constructor contexts.

We can in fact give a simple formal description of this intuition, here for DataLang in Figure 8.
A tail frame 𝑇 is a single term-former with holes in tail-position. A constructor frame 𝐾 is a
single constructor term-former (we omit deterministic blocks, which do not occur in the source).
A tail context 𝑇 ∗ is an arbitrary composition of tail-frame, and a TMC context𝑈 ∗ is an arbitrary
composition of tail frames and constructor frames.
If a source function can be decomposed in a TMC context 𝑈 ∗ with source expressions in its

holes, some of which are calls to TMC-transformed functions, then our relation admits a DPS
transformation where all those function calls are tail-calls, and this transformation is reachable in
our OCaml implementation, possibly by adding some annotations.

Note in particular that we do not only optimize calls to the same function we are defining, direct
calls to arbitrary other functions can be transformed, if those functions have been annotated to be
TMC-transformed. This is analogous to how most functional languages support arbitrary tail calls
and not just tail self-recursion. We seamlessly support mutually recursive functions, DPS calls into
locally-bound functions, etc. On the other hand, we currently do not optimize call to higher-order
function arguments, or calls crossing module boundaries.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

https://github.com/ocaml/ocaml/pull/9636

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:13

3.3 Constructor Compression
The translation as we described it formally in Section 2.2 generates unpleasant code when many
constructors are nested before the recursive call. For example, consider this strange function
duplicating each element of a list:

let rec dup = function [] → [] | x :: xs → x :: x :: dup xs

Such nested constructors are common in compiler code bases, for example a desugaring pass that
transforms a single term-former into a composition of several simpler term-formers, and applies
recursively to its subterms.
Following the TMC transformation naively, the DPS version would propagate two different

locations and performs two writes. We introduced “constructor compression”, an optimization of
the generated code that avoids creating intermediary destinations for nested constructors, leading
to clearer generated code and better constant factors. Compare the naive translation of dup, on the
left, and our compressed translation on the right:

let rec dup_dps dst ofs = function

| [] → dst.(ofs)← []

| x :: xs →
let dst1 = x :: ■ in

dst.(ofs)← dst1;

let dst2 = x :: ■ in

dst1.(1)← dst2;

dup_dps dst2 1 xs

let rec dup_dps dst ofs = function

| [] → dst.(ofs)← []

| x :: xs →
let dst2 = x :: ■ in

dst.(ofs)← x :: dst2;

dup_dps dst2 1 xs

This is implemented by passing a new transformation parameter: a stack of “delayed” constructor
applications, that are in context andmust be applied to the result of the subterm.Whenwe encounter
the final recursive call, we “reify” this stack: the last/innermost constructor in the stack becomes
the new destination (dst2 in the example above), and the rest of the stack is applied to the new
destination when we write to the old destination. There are two subtleties:

(1) if p then e1 else e2 has two subterms which are transformed in DPS style, and naively
passing the stack of delayed constructors to both subterms would duplicate code; instead we
also reify the current stack when encountering such constructs. For example,
1 :: 2 :: if p then (3 :: f ()) else (4 :: f ()) becomes:
let dst1 = 1 :: 2 :: ■ in

if p then (let dst2 = 3 :: ■ in dst1.1← dst2; f dst2 1 ())

else (let dst3 = 4 :: ■ in dst1.1← dst3; f dst3 1 ())

(2) This transformation may permute constructor applications after effectful subterms. If the
constructor application context frame contains possibly-effectful subterms (for example
f x :: □ instead of x :: □), the compiler must let-bind them at their original position to
avoid changing the evaluation order. For example,
x () :: (y (); f ()) does not become y (); (let dst = x () :: ■ in ...), but instead
let tmp = x () in (y (); let dst = tmp :: ■ in ...).

It is conceptually easy to extend our previous formalization of TMC as a rewriting relation to
capture constructor compression, by indexing this relation on an additional list of constructor
contexts. We do not present this here for lack of space, but included this change in our Coq proofs,
which establish correctness of TMC in presence of constructor compression.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:14 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

0

20

40

60

80

100

120

140

0 1 10 100 1000 104 105 106Ti
m
e
re
la
tiv

e
to

na
iv
e
ta
il-
re
cu
rs
iv
e
ve
rs
io
n
(%
)

List size (no. of elements)

nontail
tail
base

containers
batteries

tmc

tmc-unrolled

Time elapsed (relative) – lower is better

Fig. 9. List.map benchmark on OCaml 5.1

3.4 Evaluation: Benchmarks
We measured the performance of List.map (fun n → n + 1) to validate our claims that the TMC
transformation preserves program performance, and lets us replace complex hand-optimized tail-
recursive implementations. List.map is a worst-case: with most of the time spent in recursion and
list construction, it is more sensitive to constant-factor overheads than other recursive functions.
The different versions we benchmark are the following. We measure the code size (in lines) of

each version, as a reasonable approximation of its implementation complexity.
nontail (5 lines of code) The naive, non-tail-recursive implementation.
tail (9 lines) The naive tail-recursive implementation, List.rev (List.rev_map f xs).
base (78 lines) The implementation of Jane Street’s Base library (version 0.14.0). It is heavily

hand-optimized to compensate for the costs of being tail-recursive.
containers (55 lines) Another standard-library extension by Simon Cruanes; it is the hand-

optimized tail-recursive implementation we included in the Prologue.
batteries (29 lines) The implementation of the community-maintained Batteries library. It is

actually written in destination-passing-style, using an unsafe encoding with Obj.magic to
unsafely cast a mutable record into a list cell. (The trick comes from the older Extlib library,
was introduced by Brian Hurt in 2003, and has a comment crediting Jacques Garrigue for the
particular encoding used.)

tmc (5 lines) “Our” version, the last version of the Prologue: the result of applying our implemen-
tation of the TMC transformation to the simple, non-tail-recursive version.

tmc-unrolled (18 lines) The result of manually unrolling the tmc implementation three times, to
be compared with base and containers that use manual unrolling as well.

The benchmarks reports the relative performance compared to the naive tail-recursive version
as our baseline. They were run on OCaml 5.1 in July 2024, on a Linux machine with an AMD Ryzen

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

https://github.com/janestreet/base
https://github.com/ocaml-batteries-team/batteries-included/

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:15

processor fixed at a 3Ghz frequency, looping each measurement for 5s (a single List.map run takes
between 7ns, for empty lists, and 89ms on lists with a million element).

Qualitatively we see that there are four groups:
• tmc, batteries perform very well on large lists, but they are slower than the baseline on
small lists.
• nontail performs better than tmc, batteries on list sizes up to 104, and much worse on
larger lists.
• base, containers perform noticeably better than nontail at all sizes, but worse than the
TMC versions above size 104.
• tmc-unrolled is the best option: it performs as well as base and containers before 104, and
as well as tmc, batteries afterwards.

Our interpretation of the result is that some unrolling makes a noticeable performance difference
for such a short function: tmc is not good enough on smaller lists, but tmc-unrolled is the
best-performing, despite being much simpler than the base and containers versions.

Asymptotics of nontail. The bad behavior of nontail on large lists comes from a quadratic
behavior on very large call stacks, coming from a repeated scan of the call stack during minor
collections. (The OCaml compiler and runtime could be tweaked to avoid this quadratic behavior,
at the cost of some small constant overhead on function returns.)

4 Specifying TMC
In this section, we gradually introduce aspects of our relational separation logic, by introducing
our specifications for the direct-style and destination-passing-style transformations of Section 2 in
relational separation logic.

4.1 Direct Transformation

Intuitively, the direct transformation 𝑒𝑠
𝜉
⇝
dir
𝑒𝑡 preserves the behaviors of the source expression 𝑒𝑠 .

Basically, 𝑒𝑠 and 𝑒𝑡 compute the same thing. Using relational Hoare logic, a extension of standard
Hoare logic relating two expressions, we would write:{

𝑒𝑠
𝜉
⇝
dir
𝑒𝑡

}
𝑒𝑠 ≳ 𝑒𝑡 {𝑣𝑠 , 𝑣𝑡 . 𝑣𝑠 ≈ 𝑣𝑡 }

The informal meaning of this specification is that 1) 𝑒𝑡 refines 𝑒𝑠 in the sense that any behavior
(converging, diverging or stuck execution) of 𝑒𝑡 is also a behavior of 𝑒𝑠 and 2) if 𝑒𝑡 converges to
value 𝑣𝑡 , then 𝑒𝑠 also converges to some value 𝑣𝑠 that is similar to 𝑣𝑠 . We will formalize the notion
of behavior in Section 8 and that of similarity later in this section. For the time being, the reader
may assume similarity is just equality on values.

4.2 DPS Transformation

The DPS transformation (ℓ, 𝑖, 𝑒𝑠)
𝜉
⇝
dps

𝑒𝑡 is parameterized by a destination (ℓ, 𝑖) pointing to an
uninitialized field of some block. Intuitively, 𝑒𝑡 computes the same thing as 𝑒𝑠 but writes it into
the destination instead of returning it. This can be expressed concisely in relational separation
logic [Yang 2007], a further extension of relational Hoare logic:{

(ℓ, 𝑖, 𝑒𝑠)
𝜉
⇝
dps
𝑒𝑡 ∗ (ℓ + 𝑖) ↦→𝑡 ■

}
𝑒𝑠 ≳ 𝑒𝑡 {𝑣𝑠 , (). ∃ 𝑣𝑡 . (ℓ + 𝑖) ↦→𝑡 𝑣𝑡 ∗ 𝑣𝑠 ≈ 𝑣𝑡 }

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:16 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

() ≈ () 𝑖 ≈ 𝑖 𝑡 ≈ 𝑡 𝑏 ≈ 𝑏
∀ 𝑖 ∈ Index. (ℓ𝑠 + 𝑖)

bij≈ (ℓ𝑡 + 𝑖)
ℓ𝑠 ≈ ℓ𝑡

𝑓 ∈ dom(𝑝𝑠)
@𝑓 ≈ @𝑓

Fig. 10. Similarity in iProp

In words: if 𝑒𝑠 transforms into 𝑒𝑡 , and if we uniquely own the destination location ℓ + 𝑖 , we can
transfer ownership to 𝑒𝑡 and run the two programs, whose execution must be related. When they
reduce to values, 𝑒𝑠 reduces to a source value 𝑣𝑠 and 𝑒𝑡 to the unit value (), and we recover the
unique ownership of the destination, which now contains a target value 𝑣𝑡 similar to 𝑣𝑠 .

4.3 Heap Bijection
Defining value similarity as just syntactic equality is not sufficient: corresponding source and
target block allocations are not done in lockstep, so the resulting locations may differ. For example,
consider the map function and its DPS transform from Section 1.2. In the source program, the
cons cell y :: @map (fn, xs) is allocated after the recursive call. In the transformed program, the
corresponding block is allocated before the call.
To deal with this, we introduce a heap bijection as in Simuliris [Gäher, Sammler, Spies, Jung,

Dang, Krebbers, Kang and Dreyer 2022]. This is a partial bijection (some destination locations have
no source counterpart) which grows over time. Its usage is formalized by the BijInsert rule:

BijInsert
ℓ𝑠 ↦→𝑠 𝑣𝑠 ℓ𝑡 ↦→𝑡 𝑣𝑡 𝑣𝑠 ≈ 𝑣𝑡

ℓ𝑠
bij≈ ℓ𝑡

This is a ghost update rule that mutates the logical state. It can only be applied when the two
locations ℓ𝑠 and ℓ𝑡 have similar content 𝑣𝑠 ≈ 𝑣𝑡 . It consumes the “private” ownership of the source
and target points-to ℓ𝑠 ↦→𝑠 𝑣𝑠 and ℓ𝑡 ↦→𝑡 𝑣𝑡 , and produces a persistent proposition ℓ𝑠

bij≈ ℓ𝑡 witnessing
that the two locations are now in the “public” bijection.
We formally define value similarity 𝑣𝑠 ≈ 𝑣𝑡 in Figure 10. It coincides with equality except on

blocks, for which we require all fields to be registered in the bijection.

5 Relational Separation Logic
In this section, we describe our relational program logic, presented in Figure 11. We omit some
congruence rules for brevity. The relation 𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ} relates a source expression 𝑒𝑠 with a
target expression 𝑒𝑡 under a postconditionΦ, following the protocolX. Informally, this is a backward
simulation: any execution of the target term 𝑒𝑡 can be mapped back to an execution of the source
term 𝑒𝑠 , and if the target term reaches a value 𝑣𝑡 then the source term can reach a 𝑣𝑠 such that
the postcondition Φ(𝑣𝑠 , 𝑣𝑡) holds. The protocol X specifies pairs of abstract transitions, that could
model foreign/external calls for example, that have to be taken in lockstep on both side. Formally,
the judgment 𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ} in our program logic establishes a simulation relation simX (Φ, 𝑒𝑠 , 𝑒𝑡)
that we will define in Section 8.4
We extend it to support a precondition in the standard way:

{𝑃} 𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ} B □ (𝑃 −∗ 𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ})
4As usual, the relation between the program logic and the simulation can be viewed in two ways. You can view the
program logic as a syntactic system of inference rules, with a proof that if a judgment admits a closed derivation then the
corresponding simulation statement holds. Or you can think of the program logic judgment and the simulation statement
as the same thing, and inference rules are a convenient notation for admissibility lemmas.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:17

RelPost
Φ(𝑣𝑠 , 𝑣𝑡)

𝑣𝑠 ≳ 𝑣𝑡 ⟨X⟩ {Φ}

RelStuck
strongly-stuck𝑝𝑠 (𝑒𝑠) strongly-stuck𝑝𝑡 (𝑒𝑡)

𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelBind
𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {𝜆(𝑣𝑠 , 𝑣𝑡). 𝐸𝑠 [𝑣𝑠] ≳ 𝐸𝑡 [𝑣𝑡] ⟨X⟩ {Φ}}

𝐸𝑠 [𝑒𝑠] ≳ 𝐸𝑡 [𝑒𝑡] ⟨X⟩ {Φ}

RelSrcPure
𝑒𝑠

𝑝𝑠−→
pure

𝑒′𝑠 𝑒′𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}

𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelTgtPure
𝑒𝑡

𝑝𝑡−→
pure

𝑒′𝑡 𝑒𝑠 ≳ 𝑒
′
𝑡 ⟨X⟩ {Φ}

𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelSrcBlock1
let 𝑥1 = 𝑒𝑠1 in

let 𝑥2 = 𝑒𝑠2 in

[𝑡,𝑥1,𝑥2]
≳ 𝑒𝑡 ⟨X⟩ {Φ}

{ 𝑡, 𝑒𝑠1, 𝑒𝑠2 } ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelSrcBlock2
let 𝑥2 = 𝑒𝑠2 in

let 𝑥1 = 𝑒𝑠1 in

[𝑡,𝑥1,𝑥2]
≳ 𝑒𝑡 ⟨X⟩ {Φ}

{ 𝑡, 𝑒𝑠1, 𝑒𝑠2 } ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelTgtBlock

𝑒𝑠 ≳
let 𝑥1 = 𝑒𝑡1 in

let 𝑥2 = 𝑒𝑡2 in

[𝑡,𝑥1,𝑥2]
⟨X⟩ {Φ} 𝑒𝑠 ≳

let 𝑥2 = 𝑒𝑡2 in

let 𝑥1 = 𝑒𝑡1 in

[𝑡,𝑥1,𝑥2]
⟨X⟩ {Φ}

𝑒𝑠 ≳ { 𝑡, 𝑒𝑡1, 𝑒𝑡2 } ⟨X⟩ {Φ}

RelSrcBlockDet
∀ ℓ𝑠 . ℓ𝑠 ↦→𝑠 (𝑡, 𝑣𝑠1, 𝑣𝑠2) −∗ ℓ𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}

[𝑡, 𝑣𝑠1, 𝑣𝑠2] ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelTgtBlockDet
∀ ℓ𝑡 . ℓ𝑡 ↦→𝑡 (𝑡, 𝑣𝑡1, 𝑣𝑡2) −∗ 𝑒𝑠 ≳ ℓ𝑡 ⟨X⟩ {Φ}

𝑒𝑠 ≳ [𝑡, 𝑣𝑡1, 𝑣𝑡2] ⟨X⟩ {Φ}

RelSrcLoad
(ℓ𝑠 + 𝑖) ↦→𝑠 𝑣𝑠

(ℓ𝑠 + 𝑖) ↦→𝑠 𝑣𝑠 −∗ 𝑣𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}
ℓ𝑠.(𝑖) ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelTgtLoad
(ℓ𝑡 + 𝑖) ↦→𝑡 𝑣𝑡

(ℓ𝑠 + 𝑖) ↦→𝑡 𝑣𝑡 −∗ 𝑒𝑠 ≳ 𝑣𝑡 ⟨X⟩ {Φ}
𝑒𝑠 ≳ ℓ𝑡.(𝑖) ⟨X⟩ {Φ}

RelSrcStore
(ℓ𝑠 + 𝑖) ↦→𝑠 𝑣𝑠

(ℓ𝑠 + 𝑖) ↦→𝑠 𝑣
′
𝑠 −∗ () ≳ 𝑒𝑡 ⟨X⟩ {Φ}

ℓ𝑠.(𝑖)← 𝑣 ′𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}

RelTgtStore
(ℓ𝑡 + 𝑖) ↦→𝑡 𝑣𝑡

(ℓ𝑡 + 𝑖) ↦→𝑡 𝑣
′
𝑡 −∗ 𝑒𝑠 ≳ () ⟨X⟩ {Φ}

𝑒𝑠 ≳ ℓ𝑡.(𝑖)← 𝑣 ′𝑡 ⟨X⟩ {Φ}

RelLoad
ℓ𝑠 ≈ ℓ𝑡 ∀ 𝑣𝑠 , 𝑣𝑡 . 𝑣𝑠 ≈ 𝑣𝑡 −∗ Φ(𝑣𝑠 , 𝑣𝑡)

ℓ𝑠.(𝑖) ≳ ℓ𝑡.(𝑖) ⟨X⟩ {Φ}

RelStore
ℓ𝑠 ≈ ℓ𝑡 𝑣𝑠 ≈ 𝑣𝑡 Φ((), ())
ℓ𝑠.(𝑖)← 𝑣𝑠 ≳ ℓ𝑡.(𝑖)← 𝑣𝑡 ⟨X⟩ {Φ}

RelProtocol
X(Ψ, 𝑒𝑠 , 𝑒𝑡) ∀𝑒′𝑠 , 𝑒′𝑡 .Ψ(𝑒′𝑠 , 𝑒′𝑡) −∗ 𝑒′𝑠 ≳ 𝑒′𝑡 ⟨X⟩ {Φ}

𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ}

Fig. 11. Relational separation logic (excerpt)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:18 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

Xdir (Ψ, 𝑒𝑠 , 𝑒𝑡) B ∃ 𝑓 , 𝑣𝑠 , 𝑣𝑡 .
𝑓 ∈ dom(𝑝𝑠) ∗ 𝑒𝑠 = @𝑓 𝑣𝑠 ∗ 𝑒𝑡 = @𝑓 𝑣𝑡 ∗
𝑣𝑠 ≈ 𝑣𝑡 ∗
∀𝑤𝑠 ,𝑤𝑡 .𝑤𝑠 ≈ 𝑤𝑡 −∗ Ψ(𝑤𝑠 ,𝑤𝑡)

XDPS (Ψ, 𝑒𝑠 , 𝑒𝑡) B ∃ 𝑓 , 𝑓dps, 𝑣𝑠 , ℓ1, ℓ2, ℓ, 𝑖, 𝑣𝑡 .
𝑓 ∈ dom(𝑝𝑠) ∗ 𝜉 [𝑓] = 𝑓dps ∗ 𝑒𝑠 = @𝑓 𝑣𝑠 ∗ 𝑒𝑡 = @𝑓dps ℓ1 ∗
(ℓ1 + 1) ↦→𝑡 (ℓ2, 𝑣𝑡) ∗ (ℓ2 + 1) ↦→𝑡 (ℓ, 𝑖) ∗ (ℓ + 𝑖) ↦→ ■ ∗ 𝑣𝑠 ≈ 𝑣𝑡
∀𝑤𝑠 ,𝑤𝑡 . (ℓ + 𝑖) ↦→ 𝑤𝑡 ∗𝑤𝑠 ≈ 𝑤𝑡 −∗ Ψ(𝑤𝑠 , ())

XTMC B Xdir ⊔ XDPS = 𝜆(Ψ, 𝑒𝑠 , 𝑒𝑡).Xdir (Ψ, 𝑒𝑠 , 𝑒𝑡) ∨ XDPS (Ψ, 𝑒𝑠 , 𝑒𝑡)

Fig. 12. TMC protocol (XTMC)

Compared to the specifications of Section 4, we introduced an additional protocol parameter X.
We explain it together with the RelProtocol rule in Section 6.

Language-independent rules. The following rules are independent of DataLang and could be
reused as is in further works.

RelPost states that two values are related when they are in the relational postcondition.
RelStuck relates strongly stuck expressions. An expression is strongly stuck when it is stuck

for any heap state.
RelBind is a standard bind rule sequencing computations on both sides.
RelSrcPure and RelTgtPure let us take pure reduction steps in either the source or target.

Pure steps (definition omitted for brevity) are the reduction steps that are deterministic and do not
depend on the state.

Language-specific rules: non-determinism. 𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ} asserts that 𝑒𝑡 refines 𝑒𝑠 : any behavior
of 𝑒𝑡 is also a behavior of 𝑒𝑠 . Consequently, non-determinism is treated differently in the source and
target: we treat non-determinism as angelic in source reductions and demonic in target reductions.
Our operational semantics uses non-determinism in the reduction of constructors: { 𝑡, 𝑒1, 𝑒2 }

reduces to [𝑡,𝑥1,𝑥2], where 𝑥1 and 𝑥2 are bound to 𝑒1 and 𝑒2 in some non-deterministic order. In
the program logic, the user may choose an order for the source reduction, by using one of the rules
RelSrcBlock1 or RelSrcBlock2. On the other hand, they have to prove that the expressions are
related against any target order, by proving the two premises of the rule RelTgtBlock.

Language-specific rules: private locations. We can reason on points-to assertions in a standard way.
From a deterministic constructor [𝑡, 𝑣1, 𝑣2], we can apply RelSrcBlockDet or RelTgtBlockDet,
yielding a points-to assertion for the allocated block. The rules RelSrcLoad and RelTgtLoad let
us load the pointed value while RelSrcStore and RelTgtStore let us update it with a new value.
We interpret locations owned by a points-to assertion as “private” to the source or target: they are
not registered in the “public” partial heap bijection.

Language-specific rules: locations in the bijection. Corresponding source and target locations
registered in the bijection through BijInsert have given up their respective points-to assertions
but can still be accessed using the rules RelLoad and RelStore.

RelLoad states that simultaneously loading from two corresponding blocks yields similar values.
RelStore lets us store similar values into the same field of two corresponding blocks.
These two rules enforce the bijection invariant: corresponding blocks contain similar values.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:19

6 Abstract Protocols
In Section 8, we explain how our relation is defined coinductively and the first step of the proof
essentially amounts to coinduction. To internalize the coinduction hypothesis into the program
logic, we introduce an additional parameter X, a protocol [de Vilhena and Pottier 2021], which is a
general proof-state transformer of type

(Expr→ Expr→ iProp) → Expr→ Expr→ iProp
Protocols are used in the logic via the RelProtocol rule. A pair of expressions 𝑒𝑠 and 𝑒𝑡 is

supported by the protocol when it relates them to a postcondition Ψ, capturing the possible results
of an abstract/axiomatic transition from 𝑒𝑠 and 𝑒𝑡 . To conclude that 𝑒𝑠 and 𝑒𝑡 are related, one must
prove that any two 𝑒′𝑠 and 𝑒′𝑡 accepted by this postcondition Ψ remain related.

6.1 TMC Protocols
In our correctness proof for the TMC transformation, we use a specific protocol XTMC defined
in Figure 12 by combining two sub-protocols Xdir and XDPS for the direct-style and DPS-style
functions. Our coinduction hypothesis assumes toplevel function calls to be compatible with the
direct and DPS specifications that we want to prove, and allows to reason about recursive calls to
those functions inside the function bodies we are trying to relate.
Xdir specifies the direct calling convention induced by the direct transformation. It requires 𝑒𝑠

and 𝑒𝑡 to be function calls to the same function with similar arguments. To apply it, users can
choose any postcondition implied by value similarity. This rule is equivalent to the Sim-Call rule
of Simuliris. Most useful protocols are formed by combining Xdir with other, more specialized
protocols.

XDPS specifies the DPS calling convention induced by the DPS transformation. It requires 𝑒𝑠 to be
a function call to a TMC-transformed function 𝑓 and 𝑒𝑡 to be a function call to the DPS transform
of 𝑓 . As in the DPS specification, ownership of the destination must be passed to the protocol. To
apply it, users can choose any postcondition implied by the postcondition of the DPS specification,
including the recovered ownership of the modified destination.

6.2 Other Examples of Protocols
Our program logic can be instantiated with other protocols to reason other program transformations.
To demonstrate this generality, we have also verified an inlining and an accumulator-passing-style
(APS) transformation — both included in our mechanization.

Inlining: Here, the relation 𝑒𝑠 ⇝ 𝑒𝑡 allows 𝑒𝑡 to recursively inline functions in 𝑒𝑠 . As with TMC,
it captures all possible inlining strategies. This relation can be proved correct by using a fairly
simple protocol (combined with Xdir) relating a source function and its body:

Xinline (Ψ, 𝑒𝑠 , 𝑒𝑡) B ∃ 𝑓 , 𝑥, 𝑒′𝑠 , 𝑒′𝑡 , 𝑣𝑠 , 𝑣𝑡 .
𝑒𝑠 = @𝑓 𝑣𝑠 ∗ 𝑣𝑠 ≈ 𝑣𝑡 ∗
𝑝𝑠 [𝑓] = (rec 𝜆𝑥. 𝑒′𝑠) ∗ 𝑒′𝑠 ⇝ 𝑒′𝑡 ∗ 𝑒𝑡 = (let 𝑥 = 𝑣𝑡 in 𝑒

′
𝑡) ∗

∀𝑤𝑠 ,𝑤𝑡 .𝑤𝑠 ≈ 𝑤𝑡 −∗ Ψ(𝑤𝑠 ,𝑤𝑡)

Accumulator-passing style. : The APS transformation is a variant of the TMC transformation
where the contexts that are made tail-recursive are applications of associative arithmetic operators,
typically of the form (𝑒 + □) or 𝑒1 + (𝑒2 × □). (See the discussion by Leijen and Lorenzen [2023].)
We define an APS transformation, after extending DataLang with integers and arithmetic

operations. We verify it with a protocol similar to XDPS that allows calling the APS transform of a
source function with an integer accumulator: if 𝑓 𝑣𝑠 returns 𝑛, then 𝑓aps (𝑣acc, 𝑣𝑡) returns 𝑣acc + 𝑛.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:20 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

wf (Γ) B ∀𝑥 . ∃ 𝑣𝑠 , 𝑣𝑡 . Γ(𝑥) = (𝑣𝑠 , 𝑣𝑡) ∗ 𝑣𝑠 ≈ 𝑣𝑡
𝑒𝑠 ≥ 𝑒𝑡 {Φ} B ∀ Γ.wf (Γ) −∗ Γ(𝑒𝑠)1 ≳ Γ(𝑒𝑡)2 {Φ}

{𝑃} 𝑒𝑠 ≥ 𝑒𝑡 {Φ} B □ (𝑃 −∗ 𝑒𝑠 ≥ 𝑒𝑡 {Φ})

Fig. 13. Runtime relation

XAPS (Ψ, 𝑒𝑠 , 𝑒𝑡) B ∃ 𝑓 , 𝑓aps, 𝑣𝑠 , 𝑣acc, 𝑣𝑡 .
𝑓 ∈ dom(𝑝𝑠) ∗ 𝜉 [𝑓] = 𝑓aps ∗
𝑣𝑠 ≈ 𝑣𝑡 ∗ 𝑒𝑠 = @𝑓 𝑣𝑠 ∗ 𝑒𝑡 = @𝑓aps (𝑣acc, 𝑣𝑡) ∗
∀ 𝑣 ′𝑠 , 𝑒′𝑡 .
match 𝑣 ′𝑠 with 𝑛 ⇒ 𝑒′𝑡 = 𝑣acc + 𝑛 | _⇒ strongly-stuck𝑝𝑡 (𝑒

′
𝑡) end −∗

Ψ(𝑣 ′𝑠 , 𝑒′𝑡)

One subtlety is that our DataLang language is untyped, so arithmetic operations (here addition)
may get stuck on non-integer values. If the function call @𝑓 𝑣𝑠 in the source program returns a
non-integer value, then the outer context 𝑣acc + □ gets stuck. But in the transformed program, this
failure happens inside the body of the APS-transformed function @𝑓aps . To represent this failure case
in our protocol, the postcondition Ψ relates a non-integer source return value 𝑣 ′𝑠 with any strongly
stuck expression 𝑒′𝑡 in the target. This relies on the generality of our protocols being predicate
transformers on expressions, not just values.

7 Proof of the Specification
In this section, we prove the specifications of Section 4.
As mentioned in Section 6, we instantiate our program logic with a specific protocol XTMC

defined in Figure 12. We define a shorthand notation for this instantiation:
𝑒𝑠 ≳ 𝑒𝑡 {Φ} B 𝑒𝑠 ≳ 𝑒𝑡 ⟨XTMC⟩ {Φ}

So far, we worked with closed expressions, that have no free variables. We need to generalize
the specifications to open expressions that may have free variables, as is standard. To do so, we
introduce a runtime relation 𝑒𝑠 ≥ 𝑒𝑡 {Φ} in Figure 13. It requires Γ𝑠 (𝑒𝑠) and Γ𝑡 (𝑒𝑡) to be related
for any well-formed closing bisubstitution Γ ∈ X → Val × Val. In practice, Γ contains let-bound
variables that have been 𝛽-reduced, and their substitute source and target values.

In addition, we will only consider valid source expressions — denoted by wf (𝑒𝑠) —, i.e. those that
do not involve any location, deterministic block expressions, or undefined source function.

Lemma 7.1 (Specification of direct transformation).{
wf (𝑒𝑠) ∗ 𝑒𝑠

𝜉
⇝
dir
𝑒𝑡

}
𝑒𝑠 ≥ 𝑒𝑡 {𝑣𝑠 , 𝑣𝑡 . 𝑣𝑠 ≈ 𝑣𝑡 }

Lemma 7.2 (Specification of DPS transformation).{
wf (𝑒𝑠) ∗ (ℓ, 𝑖, 𝑒𝑠)

𝜉
⇝
dps
𝑒𝑡 ∗ (ℓ + 𝑖) ↦→𝑡 ■

}
𝑒𝑠 ≥ 𝑒𝑡 {𝑣𝑠 , (). ∃ 𝑣𝑡 . (ℓ + 𝑖) ↦→𝑡 𝑣𝑡 ∗ 𝑣𝑠 ≈ 𝑣𝑡 }

Both proofs proceed by induction over 𝑒𝑠 and mutual induction over 𝑒𝑠
𝜉
⇝
dir
𝑒𝑡 and (ℓ, 𝑖, 𝑒𝑠)

𝜉
⇝
dps
𝑒𝑡 .

In each case we then apply the relevant rules of the program logic.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:21

sim-bodyX B

𝜆 𝑠𝑖𝑚. 𝜆 𝑠𝑖𝑚-𝑖𝑛𝑛𝑒𝑟 . 𝜆 (Φ, 𝑒𝑠 , 𝑒𝑡).∀𝜎𝑠 , 𝜎𝑠 . I(𝜎𝑠 , 𝜎𝑡) −∗ |⇛

∨


1○ I(𝜎𝑠 , 𝜎𝑡) ∗ Φ(𝑒𝑠 , 𝑒𝑡)
2○ I(𝜎𝑠 , 𝜎𝑡) ∗ strongly-stuck𝑝𝑠 (𝑒𝑠) ∗ strongly-stuck𝑝𝑡 (𝑒𝑠)
3○ ∃ 𝑒′𝑠 , 𝜎 ′𝑠 . (𝑒𝑠 , 𝜎𝑠)

𝑝𝑠−→
+
(𝑒′𝑠 , 𝜎 ′𝑠) ∗ I(𝜎 ′𝑠 , 𝜎𝑡) ∗ 𝑠𝑖𝑚-𝑖𝑛𝑛𝑒𝑟 (Φ, 𝑒′𝑠 , 𝑒𝑡)

4○ reducible𝑝𝑡 (𝑒𝑡 , 𝜎𝑡) ∗ ∀𝑒′𝑡 , 𝜎 ′𝑡 . (𝑒𝑡 , 𝜎𝑡)
𝑝𝑡−→ (𝑒′𝑡 , 𝜎 ′𝑡) −∗ |⇛∨ [

A○ I(𝜎𝑠 , 𝜎 ′𝑡) ∗ 𝑠𝑖𝑚-𝑖𝑛𝑛𝑒𝑟 (Φ, 𝑒𝑠 , 𝑒′𝑡)
B○ ∃ 𝑒′𝑠 , 𝜎 ′𝑠 . (𝑒𝑠 , 𝜎𝑠)

𝑝𝑠−→
+
(𝑒′𝑠 , 𝜎 ′𝑠) ∗ I(𝜎 ′𝑠 , 𝜎 ′𝑡) ∗ 𝑠𝑖𝑚(Φ, 𝑒′𝑠 , 𝑒′𝑡)

5○ ∃ 𝐸𝑠 , 𝑒′𝑠 , 𝐸𝑡 , 𝑒′𝑡 ,Ψ.
𝑒𝑠 = 𝐸𝑠 [𝑒′𝑠] ∗ 𝑒𝑡 = 𝐸𝑡 [𝑒′𝑡] ∗ X(Ψ, 𝑒′𝑠 , 𝑒′𝑡) ∗ I(𝜎𝑠 , 𝜎𝑡) ∗
∀𝑒′′𝑠 , 𝑒′′𝑡 .Ψ(𝑒′′𝑠 , 𝑒′′𝑡) −∗ 𝑠𝑖𝑚-𝑖𝑛𝑛𝑒𝑟 (Φ, 𝐸𝑠 [𝑒′′𝑠], 𝐸𝑡 [𝑒′′𝑡])

sim-innerX B 𝜆 𝑠𝑖𝑚. 𝜇 𝑠𝑖𝑚-𝑖𝑛𝑛𝑒𝑟 . sim-bodyX (𝑠𝑖𝑚, 𝑠𝑖𝑚-𝑖𝑛𝑛𝑒𝑟)
simX B 𝜈 𝑠𝑖𝑚. sim-innerX (𝑠𝑖𝑚)

𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ [Φ] B simX (Φ, 𝑒𝑠 , 𝑒𝑡)
𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ {Φ} B 𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩

[
𝜆(𝑒′𝑠 , 𝑒′𝑡). ∃ 𝑣𝑠 , 𝑣𝑡 . 𝑒′𝑠 = 𝑣𝑠 ∗ 𝑒′𝑡 = 𝑣𝑡 ∗ Φ(𝑣𝑠 , 𝑣𝑡)

]
Fig. 14. Simulation with protocol

() ∼ () 𝑖 ∼ 𝑖 𝑡 ∼ 𝑡 𝑏 ∼ 𝑏 ℓ𝑠 ∼ ℓ𝑡 @𝑓 ∼ @𝑓

𝑣𝑠 ∼ 𝑣𝑡
Conv(𝑣𝑠) ⊒ Conv(𝑣𝑡)

𝑒𝑠 ∉ Val 𝑒𝑡 ∉ Val
Conv(𝑒𝑠) ⊒ Conv(𝑒𝑡) Div ⊒ Div

behaviours𝑝 (𝑒) B {Conv(𝑒′) | ∃𝜎. (𝑒, ∅) 𝑝−→
∗
(𝑒′, 𝜎) ∧ irreducible𝑝 (𝑒′, 𝜎)} ⊎

{Div | (𝑒, ∅) ⇑𝑝 }
𝑒𝑠 ⊒ 𝑒𝑡 B ∀𝑏𝑡 ∈ behaviours𝑝𝑡 (𝑒𝑡). ∃𝑏𝑠 ∈ behaviours𝑝𝑠 (𝑒𝑠). 𝑏𝑠 ⊒ 𝑏𝑡
𝑝𝑠 ⊒ 𝑝𝑡 B ∀ 𝑓 ∈ dom(𝑝𝑠), 𝑣 .wf (𝑣) =⇒ @𝑓 𝑣 ⊒ @𝑓 𝑣

Fig. 15. Program refinement

8 Simulation
So far, we assumed a program logic satisfying a set of reasoning rules. In this section, we prove that
our rules are sound: they imply a simulation à la Simuliris [Gäher, Sammler, Spies, Jung, Dang,
Krebbers, Kang and Dreyer 2022]. This simulation comes with an adequacy theorem that allows to
extract a behavioral refinement in the meta-logic (Coq, without Iris), our final soundness theorem.

8.1 Definition
Our simulation in defined in Figure 14. It is largely inspired by the Simuliris simulation — simplified
due to the absence of concurrency. The main difference lies in the protocol clause 5○, which is a
generalization of the function call clause of Simuliris.
The definition consists of two nested fixpoints sim and sim-inner. sim is a greatest fixpoint

(coinduction) allowing expressions to diverge (in a controlled way, see clause 4○ B○). sim-inner is a
least fixpoint (induction) allowing source and target stuttering (see clauses 3○ and 4○A○). The state
interpretation I(𝜎𝑠 , 𝜎𝑡) intuitively materializes the invariant of the simulation, including the heap
bijection (see Section 4); it is systematically maintained. We now review the six clauses.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:22 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

1○ Postcondition. The simulation can stop when the postcondition is satisfied.

2○ Stuck expressions. The simulation can also stop on simultaneously stuck expressions.

3○ Target stuttering. The source expression can angelically take some steps. This can only
happen finitely many times, as we continue with sim-inner. If we used sim instead, a silent loop in
the source could be simulated by anything, breaking preservation of divergence.

4○A○ Source stuttering. The target expression can demonically take one step. This can also only
happen finitely many times, as we continue with sim-inner. If we used sim instead, a silent loop in
the target could simulate any source expression, breaking preservation of termination.

4○ B○ Synchronization. Alternatively, both expressions can simultaneously take one step. This
can happen infinitely many times, as we continue with sim. If we used sim-inner instead, we would
be unable to relate divergent programs.

5○ Protocol application. Finally, we can apply the protocol under evaluation contexts. We can
choose any postcondition Ψ accepted by the protocol and assume it to prove the continuation. (We
justify separately that a protocol is admissible, see Section 8.2.)

8.2 Simulation Closure
If a protocol X respects a certain admissibility condition, then program relations established using
this protocol are also in the closed simulation, using the empty protocol ⊥.

Definition 8.1 (Admissibility). A protocol X is admissible, written Admissible(X), when we have:
□
(
∀Ψ, 𝑒𝑠 , 𝑒𝑡 .X(Ψ, 𝑒𝑠 , 𝑒𝑡) −∗ sim-inner⊥ (𝜆(_, 𝑒′𝑠 , 𝑒′𝑡). 𝑒′𝑠 ≳ 𝑒′𝑡 ⟨X⟩ [Ψ]) (⊥, 𝑒𝑠 , 𝑒𝑡)

)
In simple terms, the admissibility condition Admissible(X) states that every triple (Ψ, 𝑒𝑠 , 𝑒𝑡)

is justified, that is, that 𝑒𝑠 and 𝑒𝑡 are related. But the protocol X cannot be used right away to
establish this relation (this would allow cyclic, vacuous proofs). Our use of sim-inner⊥ forces a
proof of admissibility to perform some “productive” simulation steps with an empty protocol: in
this instantiation of the simulation, sim-inner uses the empty protocol and sim uses X, so we have
to perform at least one reduction in the source before we can use the protocol again.

Theorem 8.2 (Simulation closure). For any protocol X, we have:
Admissible(X) −∗ 𝑒𝑠 ≳ 𝑒𝑡 ⟨X⟩ [Φ] −∗ 𝑒𝑠 ≳ 𝑒𝑡 ⟨⊥⟩ [Φ]

Actually, for the TMC protocol, we prove a simpler condition that implies admissibility:

□

(
∀Ψ, 𝑒𝑠 , 𝑒𝑡 .X(Ψ, 𝑒𝑠 , 𝑒𝑡) −∗ ∃ 𝑒′𝑠 , 𝑒′𝑡 . 𝑒𝑠

𝑝𝑠−→
pure

𝑒′𝑠 ∗ 𝑒𝑡
𝑝𝑡−→
pure

𝑒′𝑡 ∗ 𝑒′𝑠 ≳ 𝑒′𝑡 ⟨X⟩ [Ψ]
)

With this weaker version, an admissibility proof must perform exactly one pure step on both sides
before the protocol X becomes available again. Other users of our program logic may want to reuse
this simpler definition, unless they need the full generality of the Admissible(X) definition.

8.3 Adequacy
Informally, our closed simulation is adequate in the sense that if 𝑒𝑠 simulates 𝑒𝑡 , then 𝑒𝑡 refines 𝑒𝑠 ,
i.e. the behaviors of 𝑒𝑡 are included in the behaviors of 𝑒𝑠 :

Theorem 8.3 (Simulation adeqacy). (⊢ 𝑒𝑠 ≳ 𝑒𝑡 ⟨⊥⟩ {≈}) =⇒ 𝑒𝑠 ⊒ 𝑒𝑡
The notions of behaviors and refinement are defined in Figure 15.We consider not only converging

behaviors (resulting in values or stuck expressions) but also diverging behaviors. Expression
refinement 𝑒𝑠 ⊒ 𝑒𝑡 is termination-preserving: if 𝑒𝑠 always terminates, so does 𝑒𝑡 . Program refinement
𝑝𝑠 ⊒ 𝑝𝑡 , also defined in Figure 15, requires any source function call in 𝑝𝑡 to behave as in 𝑝𝑠 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:23

8.4 Transformation Soundness
We can finally express the soundness of the TMC transformation: if program 𝑝𝑠 is well-formed
and transforms into program 𝑝𝑡 , then 𝑝𝑡 refines 𝑝𝑠 . A program is well-formed when its function
definitions are well-formed and well-scoped. Note that this statement does not use separation logic.
(In our mechanization, it is a pure Coq statement without Iris propositions.)

Theorem 8.4 (Transformation soundness). wf (𝑝𝑠) ∧ 𝑝𝑠 ⇝ 𝑝𝑡 =⇒ 𝑝𝑠 ⊒ 𝑝𝑡

9 Related Work
9.1 TMC Support in Compilers
Tail-recursion modulo cons was well-known in the Lisp community as early as the 1970s. For
example the REMREC system [Risch 1973] automatically transforms recursive functions into
loops, and supports modulo-cons tail recursion. It also supports tail-recursion modulo associative
arithmetic operators, which is outside the scope of our work, but supported by the GCC compiler
for example. The TMC fragment is precisely described (in prose) by Friedman and Wise [1975].
Other implementations include OPAL [Didrich, Fett, Gerke, Grieskamp and Pepper 1994].

In the Prolog community it is a common pattern to implement destination-passing style through
unification variables; in particular “difference lists” are a common representation of lists with a
final hole. Unification variables are first-class values: in particular they can be passed as function
arguments, providing expressive, first-class support for destination-passing style in the source
language. For example, we do not support optimizing tail contexts of the form List.append li □,
only direct constructor applications; this can be expressed in Prolog as just the difference list
(List.append li X, X) for a fresh destination variable X. But this expressiveness comes at a perfor-
mance cost, and there is no static checking that the data is fully initialized at the end of computation.
Doeraene and Van Roy [2013] implement Ozma, an experimental back-end for the Scala pro-

gramming language that targets the Oz virtual machine. Oz [Müller, Müller and Roy 1995; Schulte
and Smolka 1994] is a language that integrates features from logic- and functional-programming
style, and in particular offers pervasive “dataflow values”, a generalization of Prolog unification
variables. Ozma brings to Scala an idiom of Oz, where Prolog-style difference lists are used to
represent potentially-infinite streams that model synchronous concurrent agents. These lists must
be processed in constant stack space, so Ozma introduces a tail-modulo-cons transformation in
Prolog fashion: all data constructor arguments (and some explicitly-annotated function arguments)
are transformed into dataflow values. The motivation is expressiveness, not performance, and the
Ozma back-end is not competitive with the Scala JVM back-end. Besides the obvious engineering-
effort differences, the pervasive use of dataflow values may incur high constant overhead, making
this approach unsuitable to bring TMC to performance-conscious Scala users.
Independently of our work, Koka has implemented TMC starting in August 20205 [Leijen and

Lorenzen 2023]. An interesting problem they had to solve, which does not occur in OCaml, is how
to support TMC in presence of non-linear continuations. Our correctness argument for TMC relies
on the fact that the destination is uniquely owned, and written exactly once; this property may not
hold in programs that use multishot continuations (call/cc, let/cc, delim/cc) or multishot effect
handlers. The standard Koka runtime uses its reference-counting machinery to determine that
a destination is not uniquely-owned anymore, and stores extra metadata in partially-initialized
blocks to be able to copy them on-demand in this case. Its JavaScript back-end instead reverts to a
CPS transformation when non-linear control flow is detected.

5https://github.com/koka-lang/koka/commit/f6a343d31f486ea5edd44798dca7bca52d7b450c

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

https://github.com/koka-lang/koka/commit/f6a343d31f486ea5edd44798dca7bca52d7b450c

79:24 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

9.2 Reasoning About Destination-Passing-Style
In general, if we think of non-tail recursive functions as having an “evaluation context” representing
the continuation of the recursive call, then the techniques to turn classes of calls into tail-calls
correspond to different reified representations of non-tail contexts, equipped with specific (effi-
cient) implementations of context composition and hole-plugging. TMC comes from representing
data-construction contexts as the partial data itself, with hole-plugging by mutation. Associative-
operator transformations represent the context 1 + (4 + □) as the number 5 directly. (Sometimes
it suffices to keep around an abstraction of the context; see John Clements’ work on stack-based
security [Clements and Felleisen 2004].)
Minamide [1998] gives a “functional” interface to destination-passing-style programs, by pre-

senting a partial data-constructor composition Foo(x,Bar(□)) as a use-once, linear-typed function
linfun h → Foo(x,Bar(h)). Those special linear functions remain implemented as partial data, but
they expose a referentially-transparent interface to the programmer, restricted by a linear type
discipline. This is a beautiful way to represent destination-passing style, orthogonal to our work:
users of Minamide’s system would still have to write the transformed version by hand, and we
could implement a transformation into destination-passing style expressed in his system. Sobel
and Friedman [1998], inspired by Minamide’s work, optimize continuation-passing-style versions
of tree-traversal functions: they defunctionalize the continuations and systematically derive a
pointer-inversion implementation that remains tail-recursive. Bagrel [2023] expresses destination-
passing style programming in Linear Haskell. Finally, Lorenzen, Leijen, Swierstra and Lindley
[2024] propose constructor contexts as a first-class data structure corresponding to Minamide’s
constructor continuations, which results in a more declarative style than traditional DPS programs,
yet more explicit and more expressive than just the tail-modulo-cons fragment. They show that
traditional imperative tree-traversal programs can be systematically reconstructed from functional
implementations via constructor contexts, furthering the relations suggested by Sobel and Friedman
[1998].
Separation logic can also model partial structures to be filled later through the magic wand,

notably used to reason about list segments in imperative list-traversal functions. Mezzo [Balabonski,
Pottier and Protzenko 2016] provides a general-purpose type system based on separation logic,
which can directly express uniquely-owned partially-initialized data, and its transformation into
immutable, duplicable results. (See the List module of the Mezzo standard library, and in particular
cell, freeze and append in destination-passing-style).

9.3 Correctness Proof for TMC
Leijen and Lorenzen [2023] provide a pen-and-paper correctness argument for TMC, or in fact a
family of approaches based on optimized representations of classes of non-tail contexts, in the style
of program calculation. The clarity of their exposition is remarkable.
We were inspired by the generality of their presentation and verified that our proof technique

can also be applied to some other TMC variants, by extending our mechanized development with a
correctness proof for an accumulator-passing-style transformation.
Finally, our correctness results are more precise and slightly stronger: they work in a well-

typed setting where programs do not fail, whereas we use untyped terms and show preservation
of failure; their proofs assume a deterministic, non-effectful language, whereas we use a more
general non-deterministic, effectful language; finally, they have a very simple definition of program
equivalence (reducing to the exact same value) that works well for semi-formal reasoning, but is
unsuitable to scale the argument to other programming languages, whereas we use a standard
notion of behavioral refinement that can scale to less idealized settings. We get this extra generality

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

https://protz.github.io/mezzo/code_samples/list.mz.html

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:25

mostly as a direct result of our methodology (relational program logic backed by a simulation);
but showing preservation of failure requires some care when handling arithmetic operators in the
accumulator-passing-style variant.
Remark: the implementation they prove correct, which corresponds to the approach described

in Minamide [1998], results in a slightly less efficient generation where recursive calls to map_dps

are passed both the start of the list and the destination to be written at its end. In our case the
start of the list remains constant over all recursive calls, so our DPS version does not propagate it.
They cannot perform this simplification due to Koka’s support for multishot continuations, which
sometimes require copying the partial list within the recursion – the start of the list is necessary at
in this case.

9.4 Relational Reasoning in Separation Logic
Defining a program logic to capture unary program properties is a typical usage of Iris; relational
properties are rarer. Tassarotti, Jung and Harper [2017] use (a linear variant of) Iris to prove the
correctness of a program transformation that implements communication channels using shared
references. See the related work of ReLoC Reloaded [Frumin, Krebbers and Birkedal 2021].
A relational program logic can be justified in Iris by interpreting it as a unary relation on the

target program, typically involving the wp predicate of the base language. This approach is inspired
by CaReSL [Turon, Dreyer and Birkedal 2013]. We follow a more direct, traditional approach of
interpreting the program logic as a (binary) simulation relation (defined in the Iris meta-logic)
which is shown (adequacy) to imply a refinement between the program behaviors (denotations).

It is in fact surprisingly difficult to define simulations in Iris, if we expect them to be adequate (to
correspond to the usual notion of simulation outside the Iris world). This is due to meta-theoretical
difficulties around the “later” modality which led to the Transfinite Iris variant [Spies, Gäher,
Gratzer, Tassarotti, Krebbers, Dreyer and Birkedal 2021]. We started by defining simulations in
Transfinite Iris, but later moved to the Simuliris approach [Gäher, Sammler, Spies, Jung, Dang,
Krebbers, Kang and Dreyer 2022], where simulations are defined in standard Iris without using the
“later” modality, using coinduction instead (via its impredicative encoding).

As a minor technical point of comparison to Simuliris, our definition of behaviors (denotations)
includes non-termination, successfully evaluating to a value, but also failing with an error, and
refinement preserves all three kind of behaviors. We do not model undefined behaviors.
We believe that our approach (relational program logics justified by a simulation) is showing

promises for compiler verification. Verification of CompCert passes typically prove a forward
simulation result, which is strengthened into a backward simulation thanks to a determinism
assumption. We get the desired backward simulation directly, with compositional proofs.

9.5 Protocols
The function-call rule of Simuliris only relates calls to the same function, so it is unsuitable for
program transformations that also transform function definitions. We parameterize our program
logic and notion of simulation on a protocol X, an arbitrary predicate transformer injected into
the relation. This approach is reminiscent of the axiomatic semantics [Wang, Cuellar and Chlipala
2014] proposed to reason about foreign function calls. In the Iris community, we were directly
inspired by protocols de Vilhena and Pottier [2021], and this approach was also reused recently, in
a unary setting, by Guéneau, Hostert, Spies, Sammler, Birkedal and Dreyer [2023]. Our notion of
protocol is slightly more general than in those two works, as it can relate arbitrary expressions in
evaluation position (not just function calls), and “return” after an axiomatic transition with arbitrary
expressions (not just values). We use this extra generality to reason about accumulator-passing-style
transformation in presence of ill-typed programs – see Section 6.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

79:26 Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer

Data Availability
Full version of this paper, with appendices: https://doi.org/10.5281/zenodo.13744623
Full mechanized proofs as an artifact [Allain 2024]: https://doi.org/10.5281/zenodo.13937564

Acknowledgments
This work was initiated by Frédéric Bour who implemented TMC in an experimental variant of
the OCaml compiler and, in 2015, submitted his work for inclusion. At the time, the proposal
remained stalled due to lack of review and integration effort among maintainers. The broad lines
of the final implementation, in term of generated code, were already in Frédéric Bour’s initial
version, as well as the idea to have an opt-in transformation controlled by an attribute (See
Appendix A.2.1). This experiment also generated performance data that motivated us to push
further. (One notable technical difference is that instead of letting a destination-passing-style
function take two parameters dst and ofs, Bour would generate several versions of the function,
where the parameter ofs was specialized to a constant. He found that this did not noticeably
improve performance, and changed back to a parameter to simplify the implementation and reduce
code size.)
In 2020, Gabriel Scherer restarted Frédéric Bour’s effort with a review followed by a partial

re-implementation of the transformation that introduced the applicative style discussed in Appen-
dix A.4 as well as much of the current attribute-based user interface to control the transformation
(Appendix A.2.2). Basile Clément in turn reviewed Scherer’s version, and introduced constructor
compression (Section 3.3). Xavier Leroy implemented a change to the OCaml calling convention
to remove parameter-number restrictions on tail calls on some architectures (Appendix A.3). The
work was finally reviewed by Pierre Chambart and merged in the upstream OCaml compiler in
November 2021.

Clément Allain started working on a mechanized soundness proof for the TMC transformation
in Iris in Summer 2022, as a master’s internship supervised by François Pottier. They discovered
that the question of defining simulations in Iris is surprisingly interesting, and that correctness
proofs of transformations of general recursive functions require coinductive reasoning. Clément
Allain wrote the bulk of the correctness proof at this point, and finished the mechanization work
over 2023.

Finally, the present research article itself was written by Clément Allain and Gabriel Scherer in
Summer 2023 and Spring 2024, with excellent review comments from François Pottier, the POPL’25
anonymous reviewers, and Anton Lorenzen.

References
Clément Allain. 2024. Tail Modulo Cons, OCaml, and Relational Separation Logic — Artifact. https://doi.org/10.5281/

zenodo.14103793
Thomas Bagrel. 2023. Destination-passing style programming: a Haskell implementation. arXiv:2312.11257 [cs.PL]

https://arxiv.org/abs/2312.11257
Thibaut Balabonski, François Pottier, and Jonathan Protzenko. 2016. The Design and Formalization of Mezzo, a Permission-

Based Programming Language. ACM Transactions on Programming Languages and Systems (TOPLAS) 38, 4 (Aug. 2016),
94. https://doi.org/10.1145/2837022

Frédéric Bour, Basile Clément, and Gabriel Scherer. 2021. Tail Modulo Cons. In JFLA 2021 - Journées Francophones des
Langages Applicatifs. Saint Médard d’Excideuil, France. https://inria.hal.science/hal-03146495

John Clements and Matthias Felleisen. 2004. A tail-recursive machine with stack inspection. ACM Trans. Program. Lang.
Syst. 26, 6 (Nov. 2004), 1029–1052. https://doi.org/10.1145/1034774.1034778

Paulo Emílio de Vilhena and François Pottier. 2021. A separation logic for effect handlers. In POPL. http://cambium.inria.fr/
~fpottier/publis/de-vilhena-pottier-sleh.pdf

Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang Grieskamp, and Peter Pepper. 1994. OPAL: Design and implementation
of an algebraic programming language. In Programming Languages and System Architectures, Jürg Gutknecht (Ed.).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

https://doi.org/10.5281/zenodo.13744623
https://doi.org/10.5281/zenodo.13937564
https://doi.org/10.5281/zenodo.14103793
https://doi.org/10.5281/zenodo.14103793
https://arxiv.org/abs/2312.11257
https://arxiv.org/abs/2312.11257
https://doi.org/10.1145/2837022
https://inria.hal.science/hal-03146495
https://doi.org/10.1145/1034774.1034778
http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf
http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf

Tail Modulo Cons, OCaml, and Relational Separation Logic 79:27

Sébastien Doeraene and Peter Van Roy. 2013. A new concurrency model for Scala based on a declarative dataflow core. In
Scala Workshop (Montpellier, France) (SCALA ’13). Article 4, 10 pages. https://doi.org/10.1145/2489837.2489841

Daniel P. Friedman and David S. Wise. 1975. Unwinding stylized recursions into iterations. Technical Report 19. Computer
Science Department, Indiana University, Bloomington. https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-
Grained Concurrency and Logical Atomicity. Logical Methods in Computer Science Volume 17, Issue 3 (July 2021).
https://doi.org/10.46298/lmcs-17(3:9)2021

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek
Dreyer. 2022. Simuliris: a separation logic framework for verifying concurrent program optimizations. (2022).

Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer. 2023. Melocoton: A
Program Logic for Verified Interoperability Between OCaml and C. In OOPSLA. https://inria.hal.science/hal-04203298

Daan Leijen and Anton Lorenzen. 2023. Tail Recursion Modulo Context: An Equational Approach. Proc. ACM Program.
Lang. 7, POPL (2023), 1152–1181. https://doi.org/10.1145/3571233

Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley. 2024. The Functional Essence of Imperative Binary
Search Trees. Proc. ACM Program. Lang. 8, PLDI, Article 168 (June 2024), 25 pages. https://doi.org/10.1145/3656398

Yasuhiko Minamide. 1998. A functional representation of data structures with a hole. In POPL. https://sv.c.titech.ac.jp/
minamide/papers/hole.popl98.pdf

Martin Müller, Tobias Müller, and Peter Van Roy. 1995. Multi-Paradigm Programming in Oz. In Visions for the Future of
Logic Programming: Laying the Foundations for a Modern successor of Prolog. A Workshop in Association with ILPS’95.

Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95. https://doi.org/10.1145/3211968
Tore Risch. 1973. REMREC – A Program for Automatic Recursion Removal in Lisp. Technical Report DLU73/24. Dept. of

Computer Science, Uppsala University. http://user.it.uu.se/~torer/publ/remrec.pdf
Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions.

In Interactive Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings
(Lecture Notes in Computer Science, Vol. 9236), Christian Urban and Xingyuan Zhang (Eds.). Springer, 359–374. https:
//doi.org/10.1007/978-3-319-22102-1_24

Christian Schulte and Gert Smolka. 1994. Encapsulated search for higher-order concurrent constraint programming. In ILPS
’94. MIT Press, 16 pages.

Jonathan Sobel and Daniel P. Friedman. 1998. Recycling continuations. In ICFP. 251–260. http://www.cs.indiana.edu/
hyplan/dfried/rc.ps

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021.
Transfinite Iris: resolving an existential dilemma of step-indexed separation logic. In PLDI. https://iris-project.org/
transfinite-iris/

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving
Refinement. In ESOP. https://arxiv.org/abs/1701.05888

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for
higher-order concurrency. In ICFP. https://people.mpi-sws.org/~dreyer/papers/caresl/paper.pdf

Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler verification meets cross-language linking via data
abstraction. In OOPSLA. http://adam.chlipala.net/papers/CitoOOPSLA14/

Hongseok Yang. 2007. Relational separation logic. Theoretical Computer Science 375, 1-3 (2007), 308–334. https://doi.org/10.
1016/j.tcs.2006.12.036

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 79. Publication date: January 2025.

https://doi.org/10.1145/2489837.2489841
https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf
https://doi.org/10.46298/lmcs-17(3:9)2021
https://inria.hal.science/hal-04203298
https://doi.org/10.1145/3571233
https://doi.org/10.1145/3656398
https://sv.c.titech.ac.jp/minamide/papers/hole.popl98.pdf
https://sv.c.titech.ac.jp/minamide/papers/hole.popl98.pdf
https://doi.org/10.1145/3211968
http://user.it.uu.se/~torer/publ/remrec.pdf
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-319-22102-1_24
http://www.cs.indiana.edu/hyplan/dfried/rc.ps
http://www.cs.indiana.edu/hyplan/dfried/rc.ps
https://iris-project.org/transfinite-iris/
https://iris-project.org/transfinite-iris/
https://arxiv.org/abs/1701.05888
https://people.mpi-sws.org/~dreyer/papers/caresl/paper.pdf
http://adam.chlipala.net/papers/CitoOOPSLA14/
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1016/j.tcs.2006.12.036

	Abstract
	1 Introduction
	1.1 Prologue
	1.2 TMC Transformation Example

	2 TMC on an Idealized Language
	2.1 Language
	2.2 Transformation
	2.3 Realizing the Relation as a Function

	3 OCaml Implementation
	3.1 Examples
	3.2 Specifying Which Calls are in TMC Position
	3.3 Constructor Compression
	3.4 Evaluation: Benchmarks

	4 Specifying TMC
	4.1 Direct Transformation
	4.2 DPS Transformation
	4.3 Heap Bijection

	5 Relational Separation Logic
	6 Abstract Protocols
	6.1 TMC Protocols
	6.2 Other Examples of Protocols

	7 Proof of the Specification
	8 Simulation
	8.1 Definition
	8.2 Simulation Closure
	8.3 Adequacy
	8.4 Transformation Soundness

	9 Related Work
	9.1 TMC Support in Compilers
	9.2 Reasoning About Destination-Passing-Style
	9.3 Correctness Proof for TMC
	9.4 Relational Reasoning in Separation Logic
	9.5 Protocols

	Acknowledgments
	References

