Iris: Higher-Order Concurrent Separation Logic

Lecture 1: Introduction and Operational Semantics of Avef conc

Lars Birkedal

Aarhus University, Denmark

April 5, 2021



Overview

Today:
» Course Introduction

» Operational Semantics of Aref conc



Introduction: goals of this course

» Formal verification of programs written in realistic programming languages
» verification can mean many things, depending on which properties we try to verify
> the properties we focus on include full functional correctness, so properties are rich /
deep
» We focus on techniques that scale to concurrent higher-order imperative programs

» important in practise
» hard to reason about, especially modularly



Applications

> Verification of challenging concurrent libraries whose correctness is critical
(interactively, in the Coq proof assisistant)
» Foundation for semi-automated tools, such as Caper
» Framework for expressing and proving invariants captured by type systems.
» ML types, runST, type-and-effect systems, Rust, ...



Projects

> After this course, you can do projects related to above applications, e.g., using our
Coq implementation of Iris.

> Selected Example Projects:

>
>

Verifying Hash Tables in Iris, M.Sc. thesis by Esben Clausen, 2017.

Formalizing Concurrent Stacks With Helping: A Case Study In Iris, project by Daniel
Gratzer and Mathias Hgier, 2017.

[A version of this is now a chapter in the lecture notes.]

Modular Verification of the Ticket Lock, project by Marit Ohlenbusch, 2018.

[A version of this is now a chapter in the lecture notes.]

The Array-Based Queueing Lock, project by Simon Vindum and Emil Gjgrup, 2019.
[A version of this is now a chapter in the lecture notes.]

The CHL Lock and Logical Relations in Iris, project by Zongyaun Liu, 2020.



Iris

» A framework for higher-order concurrent separation logic

» Applicable to many different programming languages (see http://iris-project.org
for examples)

» In this course: we fix a particular higher-order concurrent imperative programming
language, called Aref conc-

» Now: syntax and operational semantics of Avef conc-


iris-project.org

Syntax, |

x,y,f € Var
¢t ¢ Loc
n ¢ Z
© i= 4= lxl=1]<]
Val v = ()]|true|false | n| €| (v,v)]|injyv |injpv |recf(x)=ce
Exp e 1= x|nleo@e]|()|true| false | ifetheneelsee | ¢

| (e,e) | me|me|injie]inje

|  matchewithinj; x = e |inj,y = eend
| recf(x)=e|ee
|

ref(e) | le | e < e | cas(e, e, e) | fork {e}



Syntax, I

ECtx E 1= —|E®e|veE|ifEtheneelsee| (E,e)|(v,E)|mE |mE
| inj; E | inj, E | match E withinj; x = e | inj, y = eend
| Eel|vE |ref(E)| 'E|E<«+e|v<+ E

| cas(E,e,€) | cas(v,E,e) | cas(v,V', E)

Heap h € Loc LNV
TPool €& € N™ Ep
Config ¢ == (hE)



Syntactic Sugar

> We write Ax.e for the term rec f(x) = e where f is some fresh variable not
appearing in e. Thus Ax.e is a non-recursive function with argument x and body
e.

> We write let x = ej in ey for the term (Ax.e2)e.

> We write e;; e for the term let x = e1 in & where x is some fresh variable not
appearing in e.



Pure reduction

) bure
VOV ~ Vv

. pure
iftruethen e else ey '~ ¢

. pure
if falsethen e else ey "~ e

i (vi, vo) Ny

match inj; v withinj; x1 = e1 | inj, %o = ez end "5 ei[v/x]

ure

(rec f(x) = e) v 5" e[(rec f(x) = e)/f, v/x]

ifv'=ve v



Per-thread one-step reduction

(h,e) ~ (h,€) if e 57 ¢
(h, ref(v)) ~ (h[£ — v],¢) if £ ¢ dom(h)
(h,10) ~~ (h, h(?)) if £ € dom(h)
(h, € < v) ~ (h[t — v],()) if £ € dom(h)
(h,cas(¥, vi, v2)) ~> (h[l — v2], true) if h(¢) =w1
(h,cas(¥, vi, v2)) ~ (h,false) if h(¢) # w1



Configuration reduction

(h,e) ~ (K, €)
(h,E[i — E[e]]) — (W, E[i — E[€]])

J ¢ dom(&) U {i}

(h,E[i — Elfork {e}]]) = (h,E[i — E[ON — €])



Example: factorial

Let v = recfac(n) = if n = Othen lelse n x fac(n — 1). We wish to consider the evaluation of v(2). For
each step, think about what the evaluation context is.

(I, 10— v(2)]) ~ ([1,[0 — if2 = 0thenlelse2 % v(2 — 1)])
~ ([], [0 = iffalsethenlelse2 x v(2 — 1)])

(0,10~ 2 v(2 — 1)])

(1,10~ 2+ v(1)])

(I,[0— 2%if1 =0thenlelsel x v(1 —1)])
(I, [0 +— 2 x iffalsethenlelse 1 x v(1 — 1)])

(IO 2%x1xv(1—1)])

(00 21+ v(O)])

(1[0 2%1xif0 =0thenlelse0x v(0 — 1)])
(1,0 = 2% 1 x iftrue then 1 else 0 * v(0 — 1)])
(I,[0—=2%1x1])

(0,[0 = 2x1])

(0,10 2])

A



Example: functional lists

Let v = recinc(xs) = match xs with inj; x1 = xs | inj, x2 = inj, (1 + 71 x2, inc(m2 x2)) end.
We consider the evaluation of v(inj, (7,inj; ())) (v applied to the list with one element, the value 7).

(1, [0 = v(inj; (7,inj; ()))])

~ ([], [0 = matchinj, (7, inj; ()) withinj; x1 = inj, (7,inj; () | injy x2 = inj, (1 4+ 71 x2, v(72 x2)) end])
~ ([ [0 = injy (1 + 1 (7, injy (), v(m2 (7,inj; ())))])

~ ([, [0 = injp (14 7, v(m2 (7, inj; ())))])

~ ([, [0 = injy (8, v(m2 (7, inj; ())))])

~ ({1, [0 = inj, (8, v(inj; ()))])

~ ([], [0 = inj, (8, match inj; () withinj; x1 = inj; () | inj, x2 = inj, (1 + 71 x2, v(72 x2)) end)])

~ ([1,[0 = inj, (8,inj; ())])



Example: references
Let v = recswap(p) = letz = (mip)inmip < Y(m p)imp < z.
We consider the evaluation of v(ref(2), ref(3)).

([, [0 — v(ref(2), ref(3))])

([h — 2],]0 — v(h, ref(3))])

([ = 2, hg = 3],[0 — v(h, hs)])

([h ~ 2, hs — 3],[0 — let z = (w1 (h, hs))in 71 (h, hs) < !(m2 (h, hs)); 72 (h, hs)  2])
([h > 2, hs > 3],[0 — letz =V inmy (h, hs) < (w2 (h, hs)); 72 (h, hs) < z])
([h 2, hg — 3],[0 > letz = 2inmy (h, hg) < V(72 (h, hs)); m2 (h, hs) + 2])
([h = 2, hs = 3], [0 = 71 (h, he) = H(m2 (h, hs)); 2 (h, hs) < 2])

([h = 2, hg = 3],[0 — h < (2 (h, hs)); w2 (h, hs) + 2])

([h = 2, hg = 3],[0 = h < Vhg; m (h, hs) « 2])

([h— 2, he + 3],[0 = h « 3;m2 (h, hs) < 2])

([h ¥ 3, hs — 3],[0 — m2 (h, hs) < 2])

([h = 3, hg — 3],[0— hg < 2])

([h — 3,hs —2],[0— ()])



Example: concurrency

Let e = fork {(1+2)+3};(4+5)+6.
We consider the evaluation of e, and just show one possible reduction sequence (more than one
possible). Notice the interleaving of reductions in the two threads.

([, [0 €])
(I,l0—=();(4+5)+6,1—(1+2)+3])
([0~ (44+5)+6,1— (1+2)+3])
([0 9+46,1+ (14+2)+3])

(I, [0~ 9+6,1—3+3])

(I, [0—~9+6,1+ 6])

(I,[0 = 15,1 ~ 6])



