
1

Iris: Higher-Order Concurrent Separation Logic

Lecture 12: The Authoritative Resource Algebra:
Concurrent Counter Modules

Lars Birkedal

Aarhus University, Denmark

September 28, 2020

2

Overview
Earlier:
I Operational Semantics of λref,conc

I e, (h, e) (h, e′), and (h, E)→ (h′, E ′)
I Basic Logic of Resources

I l ↪→ v , P ∗ Q, P −∗ Q, Γ | P ` Q

I Basic Separation Logic
I {P} e {v .Q} : Prop, isList l xs, ADTs, foldr

I Later (.) and Persistent (2) Modalities.

I Concurrency Intro, Invariants and Ghost State

I CAS and Spin Locks.

Today:

I Proof patterns for concurrency
I Key Points:

I Authoritative Resource Algebra.
I Fractions to track concurrent ownership.

3

A Recurring Specification and Proof Pattern

I Wish to consider situation where several threads operate on shared state.

I Each thread has a partial view or fragmental view of the shared state.

I There is an invariant governing the shared state.

I The invariant keeps track of what the actual state is, hence it tracks the
authoritative view of the shared state.

4

Example: Counter Module

I Counter module with three methods:
I newCounter for creating a fresh counter,
I incr for increasing the value of the counter,
I read for reading the current value of the counter.

I Abstract predicate isCounter(v , n): v is a counter whose current value is n.

I isCounter(v , n) should be persistent, so different threads can access the counter
simultaneously.

I Hence isCounter(v , n) cannot state that n is exactly the value of the counter, but
only its lower bound.

5

Counter Implementation

I The newCounter method creates the counter: a location containing the counter
value.

newCounter() = ref(0)

I The incr method increases the value of the counter by 1. Since `← ! `+ 1 is not
an atomic operation we use a cas loop:

rec incr(`) = let n = ! ` in

letm = n + 1 in

if cas(`, n,m) then () else incr `

I The read method simply reads the value

read ` = ! `.

6

Authoritative and Fragmental Views
I We will use an invariant to keep track of the shared state of the module, the value

of the counter.

I The invariant will have the authoritative view of the value of the counter, a ghost
assertion:

•m γ

Intuitively, this is the correct, true, value of the counter.

I Each thread will have a fragmental view of the value of the counter, captured by a
ghost assertion:

◦ n γ

Intuitively, this is a lower bound of the correct, true, value of the counter.

I Define abstract predicate by

isCounter(`, n, γ) = ◦ n γ ∗ ∃ι. ∃m. ` 7→ m ∗ •m γ ι

6

Authoritative and Fragmental Views
I We will use an invariant to keep track of the shared state of the module, the value

of the counter.

I The invariant will have the authoritative view of the value of the counter, a ghost
assertion:

•m γ

Intuitively, this is the correct, true, value of the counter.

I Each thread will have a fragmental view of the value of the counter, captured by a
ghost assertion:

◦ n γ

Intuitively, this is a lower bound of the correct, true, value of the counter.

I Define abstract predicate by

isCounter(`, n, γ) = ◦ n γ ∗ ∃ι. ∃m. ` 7→ m ∗ •m γ ι

7

RA requirements

|◦ n| = ◦ n (1)

•m · ◦ n ∈ V ⇒ m ≥ n (2)

•m · ◦ n • (m + 1) · ◦ (n + 1) (3)

1. a fragmental view should be duplicable (several threads may share the same
fragmental view, i.e., several threads may agree that the lower bound of counter is
n, say)

2. the fragmental view is a lower bound of the true value

3. if we own both the authoriative view and a fragmental view, then we may update
them (so we can only update a fragmental view, if we also update the
authoritative view!)

8

RA definition
I Carrier: M = N⊥,> × N where N⊥,> is the naturals with two additional elements ⊥ and
>.
I Idea: for m, n ∈ N, write •m for (m, 0) and ◦ n for (⊥, n).

I Operation:

(x , n) · (y ,m) =

(y ,max(n,m)) if x = ⊥

(x ,max(n,m)) if y = ⊥

(>,max(n,m)) otherwise

I Unit: (⊥, 0).

I Validity

V = {(x , n) | x = ⊥ ∨ x ∈ N ∧ x ≥ n} .

I Core

|(x , n)| = (⊥, n).

I (M,V, |·|) is a unital resource algebra.

9

RA definition

I For m, n ∈ N, write •m for (m, 0) and ◦ n for (⊥, n).

I Then the required properties hold.

10

Checking required properties: example

Let us check •m · ◦ n • (m + 1) · ◦ (n + 1):
I First, recall that

I •m · ◦ n = (m, 0) · (⊥, n) = (m, n), and
I • (m + 1) · ◦ (n + 1) = (m + 1, 0) · (⊥, n + 1) = (m + 1, n + 1).

I TS, for all (x , y),

(m, n) · (x , y) ∈ V ⇒ (m + 1, n + 1) · (x , y) ∈ V.

I So suppose (m, n) · (x , y) ∈ V. Then x = ⊥, and (m, n) · (x , y) = (m,max(n, y))
and max(n, y) ≤ m.

I But then also max(n + 1, y) ≤ m + 1 and hence
(m + 1, n + 1) · (x , y) = (m + 1,max(n + 1, y)) ∈ V, as required.

11

Counter Specification and Client

Exercise: Show the following specifications:

{True} newCounter() {u.∃γ. isCounter(u, 0, γ)}
∀γ.∀v .∀n. {isCounter(v , n, γ)} read v {u.u ≥ n}
∀γ.∀v .∀n. {isCounter(v , n, γ)} incr v {u.u = () ∗ isCounter(v , n + 1, γ)}

Let e be the program

let c = newCounter() in (incr c || incr c); read c .

Show the following specification for e.

{True} e {v .v ≥ 1}.

12

A More Precise Spec ?

I For the example program e above, we know operationally that the final value will
be 2.

I However, we cannot prove that with out spec, since isCounter is freely duplicable:
I we do not track whether other threads are using the counter.

I Now we will show how to use fractions to keep track of concurrent ownership.

13

Fractions to track concurrent ownership of counter

I Add fraction q to the abstract isCounter predicate:
I Intuition: If a thread has ownership of isCounter(`, n, γ, q), then
I the contribution of this thread to the actual counter value is n, and
I if q = 1, then this thread is the sole owner, otherwise (q < 1) we have fragmental

ownership.

I Specification: (note two specs for read):

{True} newCounter() {u.∃γ. isCounter(u, 0, γ, 1)}
∀p. ∀γ.∀v .∀n. {isCounter(v , n, γ, p)} read v {u.u ≥ n}
∀γ.∀v .∀n. {isCounter(v , n, γ, 1)} read v {u.u = n}
∀p. ∀γ.∀v .∀n. {isCounter(v , n, γ, p)} incr v {u.u = () ∗ isCounter(v , n + 1, γ, p)}

I isCounter is not persistent anymore; instead we have:

isCounter(`, n + k, γ, p + q) a` isCounter(`, n, γ, p) ∗ isCounter(`, k , γ, q).

14

Authoritative Resource Algebra Construction Auth(M)

I Given a unital RA (M, ε,V, |·|), let Auth(M) be RA with

I Carrier: M⊥,> ×M
I Operation:

(x , a) · (y , b) =

(y , a · b) if x = ⊥

(x , a · b) if y = ⊥

(>, a · b) otherwise

I Core:

|(x , a)|Auth(M) = (⊥, |a|)

I Valid elements:

VAuth(M) =
{

(x , a)
∣∣∣ x = ⊥ ∧ a ∈ V ∨ x ∈M∧ x ∈ V ∧ a 4 x

}
I We write •m for (m, ε) and ◦ n for (⊥, n).

15

Properties of Auth(M)

I Auth(M) is unital with unit (⊥, ε), where ε is the unit of M
I • x · • y 6∈ VAuth(M) for any x and y

I ◦ x · ◦ y = ◦ (x · y)

I • x · ◦ y ∈ V ⇒ y 4 x

I if x · z is valid in M then

• x · ◦ y • (x · z) · ◦ (y · z)

in Auth(M)

(Exercise!)

I Remark: The RA we used earlier for the counter is Auth(Nmax), where Nmax is
the RA with carrier the natural number and operation the maximum, core the
identity function and all elements valid.

16

Verifying the more precise spec

I New def’n of representation predicate:

isCounter(`, n, γ, p) = ◦ (p, n)
γ ∗ ∃ι. ∃m. ` 7→ m ∗ • (1,m)

γ ι
.

I Idea: invariant stores the exact value of the counter, hence the fraction is 1.

I Fragment ◦ (p, n)
γ

connects the actual value of the counter to the value known
to a particular thread.

I Thus, to be able to read the exact value of the counter when p is 1 we need the
property that if • (1,m) · ◦ (1, n) is valid then n = m.

I Further,need that if • (1,m) · ◦ (p, n) is valid then m ≥ n.

I Finally, wish
isCounter(`, n + k , γ, p + q) a` isCounter(`, n, γ, p) ∗ isCounter(`, k, γ, q).

17

Verifying the more precise spec: choice of RA

I Achieve the above by using Auth ((Q01 × N)?), where
I Q01 is the RA of fractions.
I N is the resource algebra of natural numbers with addition as the operation, and

every element is valid,
I (Q01 × N)? is the option RA on the product of the two previous ones.

I Properties:
I ◦ (p, n) · ◦ (q,m) = ◦ (p + q, n + m)
I if • (1,m) · ◦ (p, n) is valid then n ≤ m and p ≤ 1
I if • (1,m) · ◦ (1, n) is valid then n = m
I • (1,m) · ◦ (p, n) • (1,m + 1) · ◦ (p, n + 1).

18

Verifying the more precise spec
With isCounter defined as shown above, we get

isCounter(`, n + k , γ, p + q) a` isCounter(`, n, γ, p) ∗ isCounter(`, k , γ, q).

and

{True} newCounter() {u.∃γ. isCounter(u, 0, γ, 1)}
∀p.∀γ.∀v .∀n. {isCounter(v , n, γ, p)} read v {u.u ≥ n}
∀γ.∀v .∀n. {isCounter(v , n, γ, 1)} read v {u.u = n}
∀p.∀γ.∀v .∀n. {isCounter(v , n, γ, p)} incr v {u.u = () ∗ isCounter(v , n + 1, γ, p)}

Let e be the program

let c = newCounter() in (incr c || incr c); read c .

Now one can use the above spec to show:

{True} e {v .v = 2}.

