Iris: Higher-Order Concurrent Separation Logic

Lecture 12: The Authoritative Resource Algebra: Concurrent Counter Modules

Lars Birkedal

Aarhus University, Denmark

September 28, 2020

Overview

Earlier:

- ▶ Operational Semantics of $\lambda_{ref,conc}$
 - ▶ e, $(h, e) \rightsquigarrow (h, e')$, and $(h, \mathcal{E}) \rightarrow (h', \mathcal{E}')$
- Basic Logic of Resources

 $\blacktriangleright \ I \hookrightarrow v, \ P \ast Q, \ P \twoheadrightarrow Q, \ \Gamma \mid P \vdash Q$

- Basic Separation Logic
 - $\{P\} e \{v.Q\}$: Prop, isList *I xs*, ADTs, foldr
- Later (\triangleright) and Persistent (\Box) Modalities.
- Concurrency Intro, Invariants and Ghost State
- CAS and Spin Locks.

Today:

- Proof patterns for concurrency
- Key Points:
 - Authoritative Resource Algebra.
 - Fractions to track concurrent ownership.

A Recurring Specification and Proof Pattern

- Wish to consider situation where several threads operate on shared state.
- Each thread has a *partial view* or *fragmental view* of the shared state.
- There is an invariant governing the shared state.
- The invariant keeps track of what the actual state is, hence it tracks the authoritative view of the shared state.

Example: Counter Module

Counter module with three methods:

- newCounter for creating a fresh counter,
- incr for increasing the value of the counter,
- read for reading the current value of the counter.
- Abstract predicate isCounter(v, n): v is a counter whose current value is n.
- isCounter(v, n) should be persistent, so different threads can access the counter simultaneously.
- Hence isCounter(v, n) cannot state that n is exactly the value of the counter, but only its lower bound.

Counter Implementation

The newCounter method creates the counter: a location containing the counter value.

```
newCounter() = ref(0)
```

► The incr method increases the value of the counter by 1. Since l ← ! l + 1 is not an atomic operation we use a cas loop:

```
\operatorname{rec incr}(\ell) = \operatorname{let} n = ! \ell \operatorname{in}\operatorname{let} m = n + 1 \operatorname{in}\operatorname{if} \operatorname{cas}(\ell, n, m) \operatorname{then}() \operatorname{else incr} \ell
```

The read method simply reads the value

read $\ell = ! \ell$.

Authoritative and Fragmental Views

- We will use an invariant to keep track of the shared state of the module, the value of the counter.
- The invariant will have the *authoritative view* of the value of the counter, a ghost assertion:

 $\bullet m^{\gamma}$

Intuitively, this is the correct, true, value of the counter.

Each thread will have a *fragmental view* of the value of the counter, captured by a ghost assertion:

 $[\circ n]^{\gamma}$

Intuitively, this is a lower bound of the correct, true, value of the counter.

Authoritative and Fragmental Views

- We will use an invariant to keep track of the shared state of the module, the value of the counter.
- The invariant will have the *authoritative view* of the value of the counter, a ghost assertion:

 $\bullet m^{\gamma}$

Intuitively, this is the correct, true, value of the counter.

Each thread will have a *fragmental view* of the value of the counter, captured by a ghost assertion:

 $[\circ n]^{\gamma}$

Intuitively, this is a lower bound of the correct, true, value of the counter.

Define abstract predicate by

$$\mathsf{isCounter}(\ell, n, \gamma) = \underbrace{[\circ n]}^{\gamma} * \exists \iota. \exists m. \ell \mapsto m * \underbrace{[\circ m]}^{\gamma} \overset{\iota}{}^{\iota}$$

RA requirements

$$|\circ n| = \circ n \tag{1}$$

•
$$m \cdot \circ n \in \mathcal{V} \Rightarrow m \ge n$$
 (2)

•
$$m \cdot \circ n \rightsquigarrow \bullet (m+1) \cdot \circ (n+1)$$
 (3)

- a fragmental view should be duplicable (several threads may share the same fragmental view, *i.e.*, several threads may agree that the lower bound of counter is n, say)
- 2. the fragmental view is a lower bound of the true value
- 3. if we own both the authoriative view and a fragmental view, then we may update them (so we can only update a fragmental view, if we also update the authoritative view!)

RA definition

- Carrier: $\mathcal{M} = \mathbb{N}_{\perp,\top} \times \mathbb{N}$ where $\mathbb{N}_{\perp,\top}$ is the naturals with two additional elements \perp and \top .
 - ▶ Idea: for $m, n \in \mathbb{N}$, write m for (m, 0) and $\circ n$ for (\perp, n) .

Operation:

$$(x, n) \cdot (y, m) = egin{cases} (y, \max(n, m)) & ext{if } x = ota \ (x, \max(n, m)) & ext{if } y = ota \ (op, \max(n, m)) & ext{otherwise} \end{cases}$$

► Unit: (⊥, 0).

Validity

$$\mathcal{V} = \{(x, n) \mid x = \bot \lor x \in \mathbb{N} \land x \ge n\}.$$

Core

$$|(x,n)|=(\bot,n).$$

• $(\mathcal{M}, \mathcal{V}, |\cdot|)$ is a unital resource algebra.

RA definition

- For $m, n \in \mathbb{N}$, write m for (m, 0) and $\circ n$ for (\perp, n) .
- ► Then the required properties hold.

Checking required properties: example

Let us check • $m \cdot \circ n \rightsquigarrow \bullet (m+1) \cdot \circ (n+1)$:

▶ First, recall that

•
$$m \cdot \circ n = (m, 0) \cdot (\bot, n) = (m, n)$$
, and
• $(m+1) \cdot \circ (n+1) = (m+1, 0) \cdot (\bot, n+1) = (m+1, n+1)$.

TS, for all (x, y),

$$(m,n)\cdot(x,y)\in\mathcal{V}\Rightarrow(m+1,n+1)\cdot(x,y)\in\mathcal{V}.$$

- So suppose $(m, n) \cdot (x, y) \in \mathcal{V}$. Then $x = \bot$, and $(m, n) \cdot (x, y) = (m, \max(n, y))$ and $\max(n, y) \le m$.
- ▶ But then also $\max(n+1, y) \le m+1$ and hence $(m+1, n+1) \cdot (x, y) = (m+1, \max(n+1, y)) \in \mathcal{V}$, as required.

Counter Specification and Client

Exercise: Show the following specifications:

{True} newCounter() {
$$u.\exists\gamma$$
. isCounter($u, 0, \gamma$)}
 $\forall\gamma.\forall v.\forall n.$ {isCounter(v, n, γ)} read v { $u.u \ge n$ }
 $\forall\gamma.\forall v.\forall n.$ {isCounter(v, n, γ)} incr v { $u.u = () * isCounter(v, n + 1, \gamma)$ }

Let e be the program

let c = newCounter() in (incr c || incr c); read c.

Show the following specification for e.

 ${\mathsf{True}} e {v.v \ge 1}.$

A More Precise Spec ?

- For the example program e above, we know operationally that the final value will be 2.
- However, we cannot prove that with out spec, since isCounter is freely duplicable:
 we do not track whether other threads are using the counter.
- Now we will show how to use *fractions* to keep track of concurrent ownership.

Fractions to track concurrent ownership of counter

- ► Add fraction *q* to the abstract isCounter predicate:
 - ▶ Intuition: If a thread has ownership of isCounter(ℓ , n, γ , q), then
 - the contribution of this thread to the actual counter value is n, and
 - ▶ if q = 1, then this thread is the sole owner, otherwise (q < 1) we have fragmental ownership.</p>
- Specification: (note two specs for read):

 $\begin{aligned} &\{\mathsf{True}\} \text{ newCounter}() \{u. \exists \gamma. \text{ isCounter}(u, 0, \gamma, 1) \} \\ &\forall p. \forall \gamma. \forall v. \forall n. \{\mathsf{isCounter}(v, n, \gamma, p)\} \text{ read } v \{u. u \geq n \} \\ &\forall \gamma. \forall v. \forall n. \{\mathsf{isCounter}(v, n, \gamma, 1)\} \text{ read } v \{u. u = n \} \\ &\forall p. \forall \gamma. \forall v. \forall n. \{\mathsf{isCounter}(v, n, \gamma, p)\} \text{ incr } v \{u. u = () * \mathsf{isCounter}(v, n + 1, \gamma, p) \} \end{aligned}$

isCounter is not persistent anymore; instead we have:

 $\mathsf{isCounter}(\ell, n + k, \gamma, p + q) \dashv \mathsf{isCounter}(\ell, n, \gamma, p) * \mathsf{isCounter}(\ell, k, \gamma, q).$

Authoritative Resource Algebra Construction $AUTH(\mathcal{M})$

- ▶ Given a *unital* RA $(\mathcal{M}, \varepsilon, \mathcal{V}, |\cdot|)$, let AUTH (\mathcal{M}) be RA with
 - $\blacktriangleright \quad \mathsf{Carrier:} \ \mathcal{M}_{\perp,\top} \times \mathcal{M}$
 - Operation:

$$(x,a) \cdot (y,b) = egin{cases} (y,a \cdot b) & ext{if } x = ota \ (x,a \cdot b) & ext{if } y = ota \ (op,a \cdot b) & ext{otherwise} \end{cases}$$

Core:

$$|(x,a)|_{\mathrm{AUTH}(\mathcal{M})} = (\perp,|a|)$$

Valid elements:

$$\mathcal{V}_{\mathrm{AUTH}(\mathcal{M})} = \Big\{ (x, a) \ \Big| \ x = \bot \land a \in \mathcal{V} \lor x \in \mathcal{M} \land x \in \mathcal{V} \land a \preccurlyeq x \Big\}$$

• We write • *m* for (m, ε) and $\circ n$ for (\bot, n) .

Properties of $AUTH(\mathcal{M})$

• AUTH(\mathcal{M}) is unital with unit (\bot, ε), where ε is the unit of \mathcal{M}

• •
$$x \cdot \bullet y \notin \mathcal{V}_{AUTH(\mathcal{M})}$$
 for any x and y

$$\triangleright \circ x \cdot \circ y = \circ (x \cdot y)$$

$$\blacktriangleright \bullet x \cdot \circ y \in \mathcal{V} \Rightarrow y \preccurlyeq x$$

• if $x \cdot z$ is valid in \mathcal{M} then

•
$$x \cdot \circ y \rightsquigarrow \bullet (x \cdot z) \cdot \circ (y \cdot z)$$

in $AUTH(\mathcal{M})$

(Exercise!)

▶ Remark: The RA we used earlier for the counter is AUTH(N_{max}), where N_{max} is the RA with carrier the natural number and operation the maximum, core the identity function and all elements valid.

Verifying the more precise spec

New def'n of representation predicate:

$$\mathsf{isCounter}(\ell, n, \gamma, p) = \left[\circ (p, n) \right]^{\gamma} * \exists \iota. \exists m. \ell \mapsto m * \left[\bullet (1, m) \right]^{\gamma} \right]^{\iota}.$$

Idea: invariant stores the exact value of the counter, hence the fraction is 1.

- Fragment $\left[\overline{o} (p, n) \right]^{\gamma}$ connects the actual value of the counter to the value known to a particular thread.
- ▶ Thus, to be able to read the exact value of the counter when p is 1 we need the property that if $(1, m) \cdot \circ (1, n)$ is valid then n = m.
- Further, need that if $\bullet(1, m) \cdot \circ(p, n)$ is valid then $m \ge n$.
- ► Finally, wish

 $\mathsf{isCounter}(\ell, n + k, \gamma, p + q) \dashv \mathsf{isCounter}(\ell, n, \gamma, p) * \mathsf{isCounter}(\ell, k, \gamma, q).$

Verifying the more precise spec: choice of RA

▶ Achieve the above by using $AUTH((\mathbb{Q}_{01} \times \mathbb{N})_{?})$, where

- \mathbb{Q}_{01} is the RA of fractions.
- \blacktriangleright $\mathbb N$ is the resource algebra of natural numbers with addition as the operation, and every element is valid,
- $(\mathbb{Q}_{01} \times \mathbb{N})_{?}$ is the option RA on the product of the two previous ones.

Properties:

Verifying the more precise spec

With isCounter defined as shown above, we get

$$\mathsf{isCounter}(\ell, n + k, \gamma, p + q) \dashv \vdash \mathsf{isCounter}(\ell, n, \gamma, p) * \mathsf{isCounter}(\ell, k, \gamma, q).$$

and

$$\begin{aligned} &\{\mathsf{True}\} \text{ newCounter}() \{u.\exists \gamma. \text{ isCounter}(u, 0, \gamma, 1)\} \\ &\forall p. \forall \gamma. \forall v. \forall n. \{\mathsf{isCounter}(v, n, \gamma, p)\} \text{ read } v \{u.u \geq n\} \\ &\forall \gamma. \forall v. \forall n. \{\mathsf{isCounter}(v, n, \gamma, 1)\} \text{ read } v \{u.u = n\} \\ &\forall p. \forall \gamma. \forall v. \forall n. \{\mathsf{isCounter}(v, n, \gamma, p)\} \text{ incr } v \{u.u = () * \mathsf{isCounter}(v, n + 1, \gamma, p)\} \end{aligned}$$

Let *e* be the program

$$\mathsf{let} \ c = \mathsf{newCounter}() \mathsf{in} (\mathsf{incr} \ c || \mathsf{incr} \ c); \mathsf{read} \ c.$$

Now one can use the above spec to show:

$${\mathsf{True}} \ e \ {v \cdot v = 2}.$$