
1

Iris: Higher-Order Concurrent Separation Logic

Lecture 2: Basic Logic of Resources

Lars Birkedal

Aarhus University, Denmark

September 15, 2020

2

Overview

Earlier:
I Operational Semantics of λref,conc

I e, (h, e) (h, e′), and (h, E)→ (h′, E ′)
Today:
I Basic Logic of Resources

I l ↪→ v , P ∗ Q, P −∗ Q, Γ | P ` Q

3

Iris

I A higher-order separation logic over a simple type theory with new base types and
base terms defined in signature S.

I Terms and types are as in simply typed lambda calculus, types include a type
Prop of propositions.

I Do not confuse the lambda calculus of Iris with the programming language
lambda abstractions in λref,conc

I The lambda calculus of Iris is an equational theory of functions, no operational
semantics (think standard mathematical functions)

I In λref,conc one can define functions whose behaviour is defined by the operational
semantics of λref,conc

4

Syntax: Types

τ ::= T | Z | Val | Exp | Prop | 1 | τ + τ | τ × τ | τ → τ

where

I T stands for additional base types which we will add later

I Val and Exp are types of values and expressions in λref,conc

I Prop is the type of Iris propositions.

5

Syntax: Terms

t,P ::= x | n | v | e | F (t1, . . . , tn) |
() | (t, t) | πi t | λx : τ. t | t(t) | inl t | inr t | case(t, x .t, y .t) |
False | True | t =τ t | P ⇒ P | P ∧ P | P ∨ P | P ∗ P | P −∗ P |
∃x : τ.P | ∀x : τ.P |
2P | .P |
{P} t {P} |
t ↪→ t

where
I x are variables
I n are integers
I v and e range over values of the language, i.e., they are primitive terms of types

Val and Exp
I F ranges over the function symbols in the signature S.

6

Well-typed Terms (Γ `S t : τ)

I Typing relation
Γ `S t : τ

defined inductively by inference rules.

I Here Γ = x1 : τ1, x2 : τ2, . . . , xn : τn is a context, assigning types to variables

I Selected rules:

Γ, x : τ ` t : τ ′

Γ ` λx . t : τ → τ ′
Γ ` t : τ → τ ′ u : τ

Γ ` t(u) : τ ′ Γ ` True : Prop

Γ ` t : τ Γ ` u : τ

Γ ` t =τ u : Prop

Γ ` P : Prop Γ ` Q : Prop

Γ ` P ⇒ Q : Prop

Γ, x : τ ` P : Prop

Γ ` ∀x : τ.P : Prop

7

Entailment (Γ | P ` Q)

I Entailment relation
Γ | P ` Q

for Γ ` P : Prop and Γ ` Q : Prop.

I The relation is defined by induction, using standard rules from intuitionistic
higher-order logic extended with new rules for the new connectives.

I We only have one proposition P on the left of the turnstile.
I You may be used to seeing a list of assumptions separated by commas
I Instead we extend the context by using ∧
I This choice makes it easy to extend the context also with ∗.

I To understand the entailment rules for the new connectives, we need to have an
intuitive understanding of the semantics of the logical connectives.

I Note: in this course, we do not present a formal semantics of the logic and
formally prove the logic sound (for that, see “Iris from the Ground Up: A Modular
Foundation for Higher-Order Concurrent Separation Logic” on iris-project.org).

http://iris-project.org

8

Interlude on IHOL

I Let us do some exercises in standard Intuitionistic Higher-Order Logic before
moving on to the new connectives.

9

∧ is commutative

P ∧ Q ` P ∧ Q

P ∧ Q ` Q

P ∧ Q ` P ∧ Q

P ∧ Q ` P

P ∧ Q ` Q ∧ P

10

Weakening for ∧

First observe:

P ∧ R ` P ∧ R
P ∧ R ` P

Then use transitivity to show:

by above

P ∧ R ` P P ` Q

P ∧ R ` Q

Thus we have:

P ` Q

P ∧ R ` Q

i.e., we can weaken on the left (thinking bottom-up).

11

∧ is associative

Use weakening on the left from above:

P ` P
P ∧ Q ` P

(P ∧ Q) ∧ R ` P

Q ` Q

P ∧ Q ` Q

(P ∧ Q) ∧ R ` Q
R ` R

(P ∧ Q) ∧ R ` R

(P ∧ Q) ∧ R ` Q ∧ R

(P ∧ Q) ∧ R ` P ∧ (Q ∧ R)

12

Adjoint Rules for ∧ and ⇒

Double rule (applicable from top to bottom and from bottom to top):

R ∧ P ` Q

R ` P ⇒ Q

Proof from top to bottom: directly by ⇒I.
Proof from bottom to top:

R ` P ⇒ Q P ` P

R ∧ P ` (P ⇒ Q) ∧ P

P ⇒ Q ` P ⇒ Q

(P ⇒ Q) ∧ P ` P ⇒ Q
P ` P

(P ⇒ Q) ∧ P ` P
⇒E

(P ⇒ Q) ∧ P ` Q
Trans

R ∧ P ` Q

13

∧ is greatest lower bound wrt. entailment

The ∧I and ∧E rules immediately give the following double rule:

R ` P R ` Q

R ` P ∧ Q

14

∨ is least upper bound wrt. entailment
We can also show that ∨ is least upper bound wrt. entailment, i.e., claim:

P ` R Q ` R

P ∨ Q ` R

Proof from top to bottom:

P ∨ Q ` P ∨ Q
P ` R

(P ∨ Q) ∧ P ` R

Q ` R

(P ∨ Q) ∧ Q ` R
∨E

P ∨ Q ` R

From bottom to top:

P ` P
P ` P ∨ Q P ∨ Q ` R

P ` R

(likewise to conclude Q ` R).

15

∧ distributes over / preserves ∨: P ∧ (Q ∨ R) a` (P ∧ Q) ∨ (P ∧ R)
Proof idea: use the adjoint rules for ∧ and ⇒ from above. (In the proof we also use
the least upper bound rule for ∨ from above). Proof left-to-right:

P ∧ Q ` P ∧ Q

P ∧ Q ` (P ∧ Q) ∨ (P ∧ R)

Q ` P ⇒ (P ∧ Q) ∨ (P ∧ R)

P ∧ R ` P ∧ R
P ∧ R ` (P ∧ Q) ∨ (P ∧ R)

R ` P ⇒ (P ∧ Q) ∨ (P ∧ R)

Q ∨ R ` P ⇒ (P ∧ Q) ∨ (P ∧ R)

P ∧ (Q ∨ R) ` (P ∧ Q) ∨ (P ∧ R)

Proof right-to-left:

P ` P
P ∧ Q ` P

P ` P
P ∧ R ` P

(P ∧ Q) ∨ (P ∧ R) ` P

Q ` Q

Q ` Q ∨ R

P ∧ Q ` Q ∨ R

R ` R
R ` Q ∨ R

P ∧ R ` Q ∨ R

(P ∧ Q) ∨ (P ∧ R) ` Q ∨ R

(P ∧ Q) ∨ (P ∧ R) ` P ∧ (Q ∨ R)

16

Negation

Define ¬P = P ⇒ False.
Then ¬P ` ∀Q : Prop.P ⇒ Q.
Proof:

False ` False ⊥E
False ` Q

P ⇒ False ∧ P ` Q

P ⇒ False ` P ⇒ Q

¬P ` P ⇒ Q

¬P ` ∀Q : Prop.P ⇒ Q

17

Adjoint Rule for ∀

Γ | Q ` ∀x : τ.P

Γ, x : τ | Q ` P

(here it is assumed that x 6∈ FV (Q) so that Q is well-formed in Γ).
Proof from bottom to top: directly by ∀I.
Proof from top to bottom:

Γ | Q ` ∀x : τ.P

Γ, x : τ | Q ` ∀x : τ.P Γ, x : τ ` x : τ
∀E

Γ, x : τ | Q ` P[x/x]
since P[x/x] = P

Γ, x : τ | Q ` P

(note: we use weakening for the variable context on the left)

18

Adjoint Rule for ∃

Γ | ∃x : τ.P ` Q

Γ, x : τ | P ` Q

(here it is assumed that x 6∈ FV (Q) so that Q is well-formed in Γ).
Proof from bottom to top:

Γ | ∃x : τ.P ` ∃x : τ.P

Γ, x : τ | P ` Q

Γ, x : τ | ∃x : τ.P ∧ P ` Q
∃E

Γ | ∃x : τ.P ` Q

Proof from top to bottom:

Γ, x : τ ` x : τ Γ, x : τ | P ` P[x/x]

Γ, x : τ | P ` ∃x : τ.P

Γ | ∃x : τ.P ` Q

Γ, x : τ | ∃x : τ.P ` Q

Γ, x : τ | P ` Q

19

∧ distributes over / preserves ∃: P ∧ ∃x : τ.Q a` ∃x : τ.P ∧ Q
Proof idea: the same as for ∧ distributes over ∨ (think: ∨ is binary disjunction, ∃ is finite or infinite
disjunction (depending on type τ), the distribution over arbitrary disjunctions follows from the adjoint
rule for ∧ and ⇒ earlier.)
In the proof we use the adjoint rules for ∃ described above.
Proof left-to-right:

Γ | ∃x : τ.P ∧ Q ` ∃x : τ.P ∧ Q

Γ, x : τ | P ∧ Q ` ∃x : τ.P ∧ Q

Γ, x : τ | Q ` P ⇒ ∃x : τ.P ∧ Q

Γ | ∃x : τ.Q ` P ⇒ ∃x : τ.P ∧ Q

Γ | P ∧ ∃x : τ.Q ` ∃x : τ.P ∧ Q

Proof right-to-left:

Γ, x : τ | P ` P

Γ, x : τ | P ∧ Q ` P

Γ | ∃x : τ.Q ` ∃x : τ.Q

Γ, x : τ | Q ` ∃x : τ.Q

Γ, x : τ | P ∧ Q ` ∃x : τ.Q

Γ, x : τ | P ∧ Q ` P ∧ ∃x : τ.Q

Γ | ∃x : τ.P ` P ∧ ∃x : τ.Q

20

` ∀P ,Q : Prop. (P ⇒ Q)⇒ (¬Q ⇒ ¬P)

False ` False
Q ∧ ¬Q ` False

P ⇒ Q ∧ ¬Q ∧ P ` False

P ⇒ Q ∧ ¬Q ` ¬P
P ⇒ Q ` ¬Q ⇒ ¬P

True ` (P ⇒ Q) ⇒ (¬Q ⇒ ¬P)

` ∀P,Q : Prop. (P ⇒ Q) ⇒ (¬Q ⇒ ¬P)

With the context of variables explicit:

P,Q : Prop | False ` False

P,Q : Prop | Q ∧ ¬Q ` False

P,Q : Prop | P ⇒ Q ∧ ¬Q ∧ P ` False

P,Q : Prop | P ⇒ Q ∧ ¬Q ` ¬P
P,Q : Prop | P ⇒ Q ` ¬Q ⇒ ¬P

P,Q : Prop | True ` (P ⇒ Q) ⇒ (¬Q ⇒ ¬P)

` ∀P,Q : Prop. (P ⇒ Q) ⇒ (¬Q ⇒ ¬P)

21

P : Prop | P ` ¬¬P

False ` False
P ∧ ¬P ` False

P ` ¬¬P

I In English: Suppose P holds. To show ¬¬P, so assume ¬P and show False. But
now we have assume both P and ¬P and hence we get False, as desired. Done.

22

∃ commutes with ∨: ∃x : τ.P ∨ Q a` ∃x : τ.P ∨ ∃x : τ.Q

Proof of left-to-right:

x : τ | P ` P x : τ ` x : τ

x : τ | P ` ∃x : τ.P

x : τ | P ` ∃x : τ.P ∨ ∃x : τ.Q

x : τ | Q ` Q x : τ ` x : τ

x : τ | Q ` ∃x : τ.Q

x : τ | Q ` ∃x : τ.P ∨ ∃x : τ.Q

x : τ | P ∨ Q ` ∃x : τ.P ∨ ∃x : τ.Q

∃x : τ.P ∨ Q ` ∃x : τ.P ∨ ∃x : τ.Q

23

Proof of right-to-left:

P ` P
P ` P ∨ Q

∃x .P ` ∃x .P ∨ Q

Q ` Q

Q ` P ∨ Q

∃x .Q ` ∃x .P ∨ Q

∃x .P ∨ ∃x .Q ` ∃x .P ∨ Q

Here we have used monotonicity of ∃x :

Γ, x : τ | P ` Q

Γ | ∃x : τ.P ` ∃x : τ.Q

which holds because:

Γ, x : τ | P ` Q Γ, x : τ ` x : τ

Γ, x : τ | P ` ∃x : τ.Q

Γ | ∃x : τ.P ` ∃x : τ.Q

24

Intuition for Iris Propositions

I Intuition: A proposition P describes a set of resources.

I Write R for the set of resources, and write r1, r2, etc., for elements in R.
I We assume that

I there is an empty resource
I there is a way to compose (or combine) resources r1 and r2, denoted r1 · r2
I the composition is defined for resources that are suitably disjoint, denoted r1#r2.

I Later on we will formalize such notions of resources using certain commutative
monoids. For now, it suffices to think about the example of R = Heap.

25

Intuition for Iris Propositions

I Canonical example: R = Heap, the set of heaps from λref,conc.

I Recall: Heap = Loc
fin−⇀ Val, the set of partial functions from locations to values

I The empty resource is the empty heap, denoted [].

I Two heaps h1 and h2 are disjoint, denoted h1#h2, if their domains do not overlap
(i.e., dom(h1) ∩ dom(h2) = ∅).

I The composition of two disjoint heaps h1 and h2 is the heap h = h1 · h2 defined by

h(x) =

h1(x) if x ∈ dom(h1)

h2(x) if x ∈ dom(h2)

26

Intuition for Iris Propositions

I We said: “A proposition P describes a set of resources.”

I Also say: “P is a set of resources.”

I Also say: “P denotes a set of resources.”

I P ∈ P(R).

I When r is a resource described by P, we also say that r satisfies P, or that r is in
P.

I The intuition for P ` Q is then that all resources in P are also in Q (i.e.,
∀r ∈ R. r ∈ P ⇒ r ∈ Q).

27

Describing Resources in the Logic

I Primitive: the points-to predicate x ↪→ v .

I It is a formula, i.e., a term of type Prop

Γ ` ` : Val Γ ` v : Val

Γ ` ` ↪→ v : Prop

I It describes the set of heap fragments that map location x to value v

x ↪→ v = {h | x ∈ dom(h) ∧ h(x) = v}

I Ownership reading: if I assert ` ↪→ v , then I express that I have the ownership of `
and hence I may modify what ` pointsto, without invalidating invariants of other
parts of the program.

28

Intuition for ∗ and −∗

I P ∗ Q = {r | ∃r1, r2.r = r1 · r2 ∧ r1 ∈ P ∧ r2 ∈ Q}
I For example, x ↪→ u ∗ y ↪→ v describes the set of heaps with two disjoint locations

x and y , the first stores u and the second v .

I Note: x ↪→ v ∗ x ↪→ u ` False.

I P −∗ Q = {r | ∀r1.r1#r ∧ r1 ∈ P ⇒ r · r1 ∈ Q}
I For example, the proposition

x ↪→ u −∗ (x ↪→ u ∗ y ↪→ v)

describes those heap fragments that map y to v , because when we combine it
with a heap fragment mapping x to u, then we get a heap fragment mapping x to
u and y to v .

29

Weakening Rule

Weakening rule:

∗-weak

P1 ∗ P2 ` P1

I Thus Iris is an affine separation logic.

I Example:
x ↪→ u ∗ y ↪→ v ` x ↪→ u

I Suppose h ∈ (x ↪→ u ∗ y ↪→ v).
I Then h(x) = u and h(y) = v .
I Therefore h ∈ (x ↪→ u).
I Generally, if h ∈ P and h′ ≥ h, then also h′ ∈ P.

30

Weakening Rule

In a bit more detail:
I Intuitively, the fact that this rule is sound means that propositions are interpreted

by upwards closed sets of resources:
I We say that r1 ≥ r2 iff r1 = r2 · r3, for some r3.
I Suppose r1 ∈ P1 and that r ≥ r1. Then there is r2 such that r = r1 · r2.
I Let P2 be {r2}.
I Then r1 · r2 ∈ P1 ∗ P2.
I By the weakening rule, we then also have that r = r1 · r2 ∈ P1.
I Hence P1 is upwards closed.

I The above is not a formal proof, hence the stress on “intuitively”.

31

Associativity and Commutativity of ∗

Basic structural rules:

∗-assoc

P1 ∗ (P2 ∗ P3) a` (P1 ∗ P2) ∗ P3

∗-comm

P1 ∗ P2 a` P2 ∗ P1

Sound because composition of resources, ·, is commutative and associative.

32

Separating Conjunction Introduction

∗I
P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗ Q2

I To show a separating conjuction Q1 ∗ Q2, we need to split the assumption and
decide which resources to use to prove Q1 and which ones to use to prove Q2.

I Example: P ` P ∗ P is not provable in general

33

Magic wand introduction and elimination

−∗I
R ∗ P ` Q

R ` P −∗ Q

−∗E
R1 ` P −∗ Q R2 ` P

R1 ∗ R2 ` Q

I Introduction rule intuitively sound because
I Suppose r ∈ R. TS r ∈ P −∗ Q.
I Thus let r1 ∈ P and suppose r1#r . TS r · r1 ∈ Q.
I We have r · r1 ∈ R ∗ P.
I Hence, by antecedent, r · r1 ∈ Q, as required.

I Elimination rule intuitively sound because
I . . .

