Iris: Higher-Order Concurrent Separation Logic

Lecture 2: Basic Logic of Resources

Lars Birkedal

Aarhus University, Denmark

September 15, 2020

Overview

Earlier:
» Operational Semantics of Aref conc
> e, (h,e)~ (h€e), and (h,E) — (K, E)
Today:
» Basic Logic of Resources
> 5V, PxQ PxQT|PFQ

Iris

» A higher-order separation logic over a simple type theory with new base types and
base terms defined in signature S.

> Terms and types are as in simply typed lambda calculus, types include a type
Prop of propositions.

» Do not confuse the lambda calculus of Iris with the programming language
lambda abstractions in Aref conc

» The lambda calculus of Iris is an equational theory of functions, no operational
semantics (think standard mathematical functions)

» In Aret,conc One can define functions whose behaviour is defined by the operational
semantics of Aref conc

Syntax: Types

Tu=T|Z|Val|Exp|Prop|1l|7+7|7XT|T—=>T

where
» T stands for additional base types which we will add later
» Val and Exp are types of values and expressions in Avef conc

» Prop is the type of Iris propositions.

Syntax: Terms

t,Pu=x|n|v|e|F(ty,...,tn)]

O (t,t) | mit|Ax:r.t|t(t)]|inlt]inrt]| case(t,x.t,y.t) |
False | True |t =t |P=P|PAP|PVP|PxP|P —=P|
dx:7.P|Vx:T.P|
OP|>P |
{P}t{P}|
t—t

where

> x are variables
P n are integers

> v and e range over values of the language, i.e., they are primitive terms of types
Val and Exp

» F ranges over the function symbols in the signature S.

Well-typed Terms (I'g t : 7)

» Typing relation
MFst:T
defined inductively by inference rules.
> Here [= xy :T1,x2 : T2,...,Xn . T iS @ cOntext, assigning types to variables
» Selected rules:
Mx:rtkHt: 7 ret:r— 7 u:T

S R M=t(u): 7 [+ True : Prop

M=t:r M-wu:r =P :Prop M- Q : Prop M x:7FP:Prop
N=t=;u:Prop N-P=Q:Prop =Vx:7.P:Prop

Entailment (' | P F Q)

» Entailment relation
N°ePrEQ

forTHP:Propand '~ Q : Prop.

» The relation is defined by induction, using standard rules from intuitionistic
higher-order logic extended with new rules for the new connectives.
» We only have one proposition P on the left of the turnstile.

» You may be used to seeing a list of assumptions separated by commas
P Instead we extend the context by using A
» This choice makes it easy to extend the context also with .

» To understand the entailment rules for the new connectives, we need to have an
intuitive understanding of the semantics of the logical connectives.

> Note: in this course, we do not present a formal semantics of the logic and
formally prove the logic sound (for that, see “Iris from the Ground Up: A Modular
Foundation for Higher-Order Concurrent Separation Logic” on iris-project.org).

http://iris-project.org

Interlude on IHOL

» Let us do some exercises in standard Intuitionistic Higher-Order Logic before
moving on to the new connectives.

/A IS commutative

PANQFPAQ PANQFPAQ

PAQF Q PAQF P
PAQFQAP

Weakening for A

First observe:

PAREFPAR
PARFEP
Then use transitivity to show:

by above
PAREP PFQ®

PAREQ

Thus we have:

PHQ
PARFQ

i.e., we can weaken on the left (thinking bottom-up).

/\ IS associative

Use weakening on the left from above:

QFQ
PP PAQEQ RFR
PAQFP (PAQAREQ (PAQ)ARER
(PANQ)AREP (PANQ)AREFQAR

(PANQ)AREPA(QRAR)

Adjoint Rules for A and =

Double rule (applicable from top to bottom and from bottom to top):

RAPFEQ
RFP=Q

Proof from top to bottom: directly by =1.
Proof from bottom to top:

P=QrFP=Q PrP
RFP=Q PrP (P=QAPFP=Q (P=Q)APKP
RAPH(P=Q)AP (P=QAPFQ

TRANS

RAPEQ

=E

A is greatest lower bound wrt. entailment

The Al and AE rules immediately give the following double rule:

REP RFQ
REFPAQ

V is least upper bound wrt. entailment

We can also show that V is least upper bound wrt. entailment, i.e., claim:

PFR QFR
PVQRFR
Proof from top to bottom:
PFR QFR
PVvQEPVQ (PVQ)APFR (PVQQAQER
PVQFR VE
From bottom to top:
PrP
PHPVQ PVQRFER
PFR

(likewise to conclude Q - R).

A distributes over / preserves V: PA(QV R) 4= (P A Q) V (P A R)

Proof idea: use the adjoint rules for A and = from above. (In the proof we also use
the least upper bound rule for \V from above). Proof left-to-right:

PAQFPAQ PARFPAR
PARE(PAQ)V(PAR) PARF(PAQ)V(PAR)
QFP=(PAQ)V(PAR) RFP=(PAQ)V(PAR)

QVREP=(PAQ)V(PAR)
PA(QVR)F(PAQ)V(PAR)

Proof right-to-left:

QFQ RFR
PrP PFP QFQVR RFQVR
PANQFP PARFP PAQFQVR PARFQVR
(PAQ)V(PAR)FP (PAQ)V(PAR)FQVR

(PAQ)V(PAR)FPA(QVR)

Negation

Define =P = P = False.
Then =P+ VQ : Prop.P = Q.
Proof:

False - False

False - @

P = False A\PF Q
P = False- P = Q
-P+FP=Q

1E

“PFVQ :Prop.P = Q

Adjoint Rule for V

NrNMervx:r.pP
Mx:7|QFP

(here it is assumed that x & FV (Q) so that Q is well-formed in T).
Proof from bottom to top: directly by VI.
Proof from top to bottom:

NQrvx:r.P

Mx:7|QFVYx:7.P Mx:7kx:7

Mx:7|QF Plx/x]
Mx:7|QFP

since P[x/x] = P

(note: we use weakening for the variable context on the left)

Adjoint Rule for 4

MNax:~.PFQ
Mx:7|PFQ

(here it is assumed that x € FV (Q) so that Q is well-formed in T).
Proof from bottom to top:

Mx:7|PFQ
MN3x:7.Pk3x:7.P F,X:T\EIX:T.P/\PI—QHE
Max:.PFQ

Proof from top to bottom:

Mx:7kx:7 T,x:7|PF P[x/x] MNMax:~PFQ
Mx:7|PF3Ix:7.P Mx:7|3x:7.PFQ

Mx:7|PFQ

A distributes over / preserves 3: PAdx :7.Q 4 3Ix : 7. P A Q

Proof idea: the same as for A distributes over V (think: V is binary disjunction, 3 is finite or infinite
disjunction (depending on type 7), the distribution over arbitrary disjunctions follows from the adjoint
rule for A and = earlier.)

In the proof we use the adjoint rules for 3 described above.

Proof left-to-right:

Max:7.PAQFIx:T.PAR

Mx:7|PANQE3Ix:7.PAQ
Mx:7|QFP=3Ix:7.PAQ
MN3x:7QFP=3Ix:7.PAQ

FMPAIx:7.QFIx:T.PAQR

Proof right-to-left:

Max: 7QFIx:7.Q

Mx:7|PFP Mx:7|QF3Ix:7.Q

Mx:7|PAQEFP Mx:7|PAQF3Ix:7.Q
Mx:7|PANQFPAIX:7.Q
Max:m.PFPAIx:T.Q

VP, Q : Prop.(P= Q)= (—-Q = —P)

False F False
QAN —-Q + False
P= QA-QANPF False
P=QA-QF-P
P=QF-Q=-P
True (P = Q) = (-Q = —P)
FVP,Q: Prop.(P= Q)= (-Q = —P)

With the context of variables explicit:

P, Q : Prop | False |- False
P,Q:Prop| QA —-QF False
P,Q:Prop| P= QA-QAPF False
P,Q:Prop| P=QA—-QF P
P,Q:Prop|P=QF—-Q=-P
P,Q:Prop | Truek (P = Q)= (-Q = —P)

FVP,Q :Prop.(P= Q)= (-Q = —P)

P :Prop| PF —=P

False - False
P A —P F False
PF =P

» In English: Suppose P holds. To show ——P, so assume —P and show False. But
now we have assume both P and —P and hence we get False, as desired. Done.

3 commutes with V: Ix: 7. PV Q I+-3dx: 7. PV 3dx:7.Q

Proof of left-to-right:

x:7|QFQ xX:Thx:T
x:7|QF3Ix:7.Q
x: 7| QF3Ix:T.PV3Ix:T.Q

x:7T|PFP x:7hkx:7T
x:7|PF3Ix:7.P
x:7T|PF3Ix:7.PV3x:T.Q
x:7|PVQF3Ix:7.PVIx:T.Q

Ix:7.PVQFIx:7.PVIx:T.Q

Proof of right-to-left:

PEP QrQ
PFPVQ QFPVQ

Ix.P+3Ix. PV Q Ix.QF3Ix. PV Q

dx.PV3Ix.QFIx.PV Q

Here we have used monotonicity of Jx:

Mx:7|PFQ
MN3ax:7Pk3Ix:7.Q

which holds because:

Mx:7|PFQ Mx:Thkx:7
Mx:7|PF3Ix:7.Q
Max:7.PF3Ix:7.Q

Intuition for Iris Propositions

» Intuition: A proposition P describes a set of resources.

» Write R for the set of resources, and write r1, r», etc., for elements in R.
» We assume that

» there is an empty resource
> there is a way to compose (or combine) resources r; and ry, denoted ry - r»
» the composition is defined for resources that are suitably disjoint, denoted ri#r».

» Later on we will formalize such notions of resources using certain commutative
monoids. For now, it suffices to think about the example of R = Heap.

Intuition for Iris Propositions

Canonical example: R = Heap, the set of heaps from Arcf conc-

>

fi . . :
» Recall: Heap = Loc = Val, the set of partial functions from locations to values
» The empty resource is the empty heap, denoted [].
>

Two heaps h; and hy are disjoint, denoted h;# hy, if their domains do not overlap
(i.e., dom(hy) Ndom(hy) = 0).
» The composition of two disjoint heaps h; and hy is the heap h = hy - hy defined by

hi(x) if x € dom(hy)
ha(x) if x € dom(hy)

h(x) =

Intuition for Iris Propositions

» We said: “A proposition P describes a set of resources.”

» Also say: “P is a set of resources.”

> Also say: “P denotes a set of resources.”

> P < P(R).

» When r is a resource described by P, we also say that r satisfies P, or that r is in
P.

» The intuition for P - Q is then that all resources in P are also in Q (i.e.,

VreR.re P=recQ).

Describing Resources in the Logic

» Primitive: the points-to predicate x < v.

» It is a formula, i.e., a term of type Prop

[+2¢: Val M= v: Val
N=¢< v:Prop

» It describes the set of heap fragments that map location x to value v
x = v={h| x €dom(h) A h(x) = v}

» Ownership reading: if | assert £ < v, then | express that | have the ownership of ¢
and hence | may modify what £ pointsto, without invalidating invariants of other
parts of the program.

Intuition for * and —x

» PxQ={r| 3dn,nr=n-nAne€PAnrnecq}
» For example, x < u* y — v describes the set of heaps with two disjoint locations
x and y, the first stores u and the second v.

» Note: x — v * x — u I False.
Px«Q={r|Vn.n#rAneP=r-nec@}

» For example, the proposition

v

X2 Uu—x(X—=uxy—=v)

describes those heap fragments that map y to v, because when we combine it
with a heap fragment mapping x to u, then we get a heap fragment mapping x to
uand y to v.

Weakening Rule

Weakening rule:

*-WEAK

Pl*PQFP1

» Thus Iris is an affine separation logic.

> Example:
XUy —=vkEx<—u

» Suppose h € (x = uxy <> v).

» Then h(x) = u and h(y) = v.

» Therefore h € (x < u).

» Generally, if h€ P and i’ > h, then also b’ € P.

Weakening Rule

In a bit more detail:

» Intuitively, the fact that this rule is sound means that propositions are interpreted
by upwards closed sets of resources:

We say that 1 > r, iff n = r» - r3, for some r3.

Suppose r; € P; and that r > ry. Then there is r; such that r=ry - 2.

Let P, be {rz}.

Then rp - € Py x Ps.

By the weakening rule, we then also have that r =r; -, € P;.

Hence P; is upwards closed.

VVYyVYVYYVYY

> The above is not a formal proof, hence the stress on “intuitively”.

Associativity and Commutativity of

Basic structural rules:

*-ASSOC *-COMM

P]_*(PQ*P3)—“—(P1*P2)*P3 P]_*PQ—“—PQ*P]_

Sound because composition of resources, -, is commutative and associative.

Separating Conjunction Introduction

*]
P1- @ Py - Q@

P1x Py F Qr* Qo

» To show a separating conjuction @1 * @, we need to split the assumption and
decide which resources to use to prove Q1 and which ones to use to prove Q5.

» Example: P+ P x P is not provable in general

Magic wand introduction and elimination

-] —~«E
RxPF Q RiFP+Q R-P
REP = Q Ri*Ry - Q@

» Introduction rule intuitively sound because
» Suppose r e R. TSre P« Q.
» Thus let r; € P and suppose n#r. TS r-n € Q.
» We haver-n € Rx P.
» Hence, by antecedent, r- n € Q, as required.
» Elimination rule intuitively sound because
>

