Iris: Higher-Order Concurrent Separation Logic

Lecture 2: Basic Logic of Resources

Lars Birkedal

Aarhus University, Denmark

September 15, 2020

Overview

Earlier:

- Operational Semantics of $\lambda_{ref,conc}$
 - ▶ e, $(h, e) \rightsquigarrow (h, e')$, and $(h, \mathcal{E}) \rightarrow (h', \mathcal{E}')$

Today:

- Basic Logic of Resources
 - $\blacktriangleright \ I \hookrightarrow v, \ P * Q, \ P \twoheadrightarrow Q, \ \Gamma \mid P \vdash Q$

- ► A higher-order separation logic over a simple type theory with new base types and base terms defined in signature S.
- Terms and types are as in simply typed lambda calculus, types include a type Prop of propositions.
- \blacktriangleright Do not confuse the lambda calculus of Iris with the programming language lambda abstractions in $\lambda_{ref,conc}$
 - The lambda calculus of Iris is an equational theory of functions, no operational semantics (think standard mathematical functions)
 - In λ_{ref,conc} one can define functions whose behaviour is defined by the operational semantics of λ_{ref,conc}

Syntax: Types

$$au ::= \mathsf{T} \mid \mathbb{Z} \mid \mathsf{Val} \mid \mathsf{Exp} \mid \mathsf{Prop} \mid 1 \mid au + au \mid au imes au \mid au o au$$

where

- T stands for additional base types which we will add later
- ▶ Val and Exp are types of values and expressions in $\lambda_{
 m ref,conc}$
- Prop is the type of Iris propositions.

Syntax: Terms

$$t, P ::= x \mid n \mid v \mid e \mid F(t_1, \dots, t_n) \mid$$

$$() \mid (t, t) \mid \pi_i t \mid \lambda x : \tau. t \mid t(t) \mid \text{inl } t \mid \text{inr } t \mid \text{case}(t, x.t, y.t) \mid$$
False | True | $t =_{\tau} t \mid P \Rightarrow P \mid P \land P \mid P \lor P \mid P * P \mid P \twoheadrightarrow P \mid$

$$\exists x : \tau. P \mid \forall x : \tau. P \mid$$

$$\Box P \mid \triangleright P \mid$$

$$\{P\} t \{P\} \mid$$

$$t \hookrightarrow t$$

where

- x are variables
- n are integers
- v and e range over values of the language, *i.e.*, they are primitive terms of types Val and Exp
- F ranges over the function symbols in the signature S.

Well-typed Terms ($\Gamma \vdash_{\mathcal{S}} t : \tau$)

Typing relation

 $\Gamma \vdash_{\mathcal{S}} t : \tau$

defined inductively by inference rules.

• Here $\Gamma = x_1 : \tau_1, x_2 : \tau_2, \dots, x_n : \tau_n$ is a context, assigning types to variables

Selected rules:

$$\frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \lambda x. t: \tau \rightarrow \tau'} \qquad \frac{\Gamma \vdash t: \tau \rightarrow \tau' \quad u: \tau}{\Gamma \vdash t(u): \tau'} \qquad \overline{\Gamma \vdash \text{True}: \text{Prop}}$$

$$\frac{\Gamma \vdash t: \tau \quad \Gamma \vdash u: \tau}{\Gamma \vdash t =_{\tau} u: \text{Prop}} \qquad \frac{\Gamma \vdash P: \text{Prop} \quad \Gamma \vdash Q: \text{Prop}}{\Gamma \vdash P \Rightarrow Q: \text{Prop}} \qquad \frac{\Gamma, x: \tau \vdash P: \text{Prop}}{\Gamma \vdash \forall x: \tau. P: \text{Prop}}$$

Entailment ($\Gamma \mid P \vdash Q$)

Entailment relation

 $\Gamma \mid P \vdash Q$

for $\Gamma \vdash P$: Prop and $\Gamma \vdash Q$: Prop.

- The relation is defined by induction, using standard rules from intuitionistic higher-order logic extended with new rules for the new connectives.
- We only have one proposition *P* on the left of the turnstile.
 - You may be used to seeing a list of assumptions separated by commas
 - Instead we extend the context by using \wedge
 - This choice makes it easy to extend the context also with *.
- To understand the entailment rules for the new connectives, we need to have an intuitive understanding of the semantics of the logical connectives.
- Note: in this course, we do not present a formal semantics of the logic and formally prove the logic sound (for that, see "Iris from the Ground Up: A Modular Foundation for Higher-Order Concurrent Separation Logic" on iris-project.org).

Interlude on IHOL

Let us do some exercises in standard Intuitionistic Higher-Order Logic before moving on to the new connectives.

\wedge is commutative

$\frac{\overline{P \land Q \vdash P \land Q}}{\overline{P \land Q \vdash Q}} \quad \frac{\overline{P \land Q \vdash P \land Q}}{\overline{P \land Q \vdash P}}$

Weakening for \wedge

First observe:

$$\frac{P \land R \vdash P \land R}{P \land R \vdash P}$$

Then use transitivity to show:

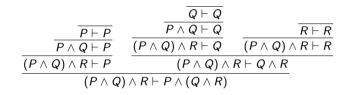
 $\frac{\frac{\mathsf{by above}}{P \land R \vdash P}}{P \land R \vdash Q}$

Thus we have:

$$\frac{P\vdash Q}{P\wedge R\vdash Q}$$

i.e., we can weaken on the left (thinking bottom-up).

Use weakening on the left from above:



Adjoint Rules for \land and \Rightarrow

Double rule (applicable from top to bottom and from bottom to top):

$$\frac{R \land P \vdash Q}{R \vdash P \Rightarrow Q}$$

Proof from top to bottom: directly by \Rightarrow I. Proof from bottom to top:

$$\frac{R \vdash P \Rightarrow Q}{R \land P \vdash (P \Rightarrow Q) \land P} \qquad \frac{\overline{P \Rightarrow Q \vdash P \Rightarrow Q}}{(P \Rightarrow Q) \land P \vdash P \Rightarrow Q} \qquad \frac{\overline{P \vdash P}}{(P \Rightarrow Q) \land P \vdash P} \Rightarrow \mathsf{E}$$

$$\frac{R \land P \vdash (P \Rightarrow Q) \land P \vdash Q}{R \land P \vdash Q} \xrightarrow{R \land P \vdash Q} \mathsf{Trans}$$

\wedge is greatest lower bound wrt. entailment

The $\wedge I$ and $\wedge E$ rules immediately give the following double rule:

 $\frac{R \vdash P \qquad R \vdash Q}{R \vdash P \land Q}$

\lor is least upper bound wrt. entailment

We can also show that \lor is least upper bound wrt. entailment, i.e., claim:

$$\frac{P \vdash R \qquad Q \vdash R}{P \lor Q \vdash R}$$

Proof from top to bottom:

$$\frac{P \vdash R}{P \lor Q \vdash P \lor Q} = \frac{P \vdash R}{(P \lor Q) \land P \vdash R} = \frac{Q \vdash R}{(P \lor Q) \land Q \vdash R} \lor E$$

From bottom to top:

$$\frac{\overline{P \vdash P}}{P \vdash P \lor Q} \quad P \lor Q \vdash R}{P \vdash R}$$

(likewise to conclude $Q \vdash R$).

\land distributes over / preserves \lor : $P \land (Q \lor R) \dashv (P \land Q) \lor (P \land R)$

Proof idea: use the adjoint rules for \land and \Rightarrow from above. (In the proof we also use the least upper bound rule for \lor from above). Proof left-to-right:

$$\frac{\overline{P \land Q \vdash P \land Q}}{P \land Q \vdash (P \land Q) \lor (P \land R)} = \frac{\overline{P \land R \vdash P \land R}}{P \land R \vdash (P \land Q) \lor (P \land R)} = \frac{\overline{P \land R \vdash P \land R}}{R \vdash P \Rightarrow (P \land Q) \lor (P \land R)} = \frac{\overline{P \land R \vdash P \land R}}{R \vdash P \Rightarrow (P \land Q) \lor (P \land R)}$$

Proof right-to-left:

$$\frac{\overline{P \vdash P}}{\underline{P \land Q \vdash P}} \quad \frac{\overline{P \vdash P}}{P \land R \vdash P} \qquad \frac{\overline{Q \vdash Q}}{Q \vdash Q \lor R} \quad \frac{\overline{R \vdash R}}{P \land Q \vdash Q \lor R}}{(P \land Q) \lor (P \land R) \vdash P} \quad \frac{\overline{P \land Q} \vdash Q \lor R}{(P \land Q) \lor (P \land R) \vdash Q \lor R}$$

Negation

Define $\neg P = P \Rightarrow$ False. Then $\neg P \vdash \forall Q : \text{Prop.} P \Rightarrow Q$. Proof:

$$\frac{\overline{\mathsf{False}} \vdash \mathsf{False}}{\mathsf{False} \vdash Q} \perp \mathsf{E}$$

$$\frac{P \Rightarrow \mathsf{False} \land P \vdash Q}{P \Rightarrow \mathsf{False} \vdash P \Rightarrow Q}$$

$$\frac{\overline{P} \vdash P \Rightarrow Q}{\overline{P \vdash P \Rightarrow Q}}$$

Adjoint Rule for \forall

$$\frac{\Gamma \mid Q \vdash \forall x : \tau. P}{\Gamma, x : \tau \mid Q \vdash P}$$

(here it is assumed that $x \notin FV(Q)$ so that Q is well-formed in Γ). Proof from bottom to top: directly by $\forall I$. Proof from top to bottom:

$$\frac{\Gamma \mid Q \vdash \forall x : \tau. P}{\Gamma, x : \tau \mid Q \vdash \forall x : \tau. P} \quad \overline{\Gamma, x : \tau \vdash x : \tau} \\ \frac{\Gamma, x : \tau \mid Q \vdash P[x/x]}{\Gamma, x : \tau \mid Q \vdash P} \text{ since } P[x/x] = P$$

(note: we use weakening for the variable context on the left)

Adjoint Rule for \exists

$$\frac{\Gamma \mid \exists x : \tau. P \vdash Q}{\Gamma, x : \tau \mid P \vdash Q}$$

(here it is assumed that $x \notin FV(Q)$ so that Q is well-formed in Γ). Proof from bottom to top:

$$\frac{\overline{\Gamma \mid \exists x : \tau. P \vdash \exists x : \tau. P}}{\Gamma \mid \exists x : \tau. P \vdash Q} = \frac{\overline{\Gamma, x : \tau \mid P \vdash Q}}{\overline{\Gamma, x : \tau \mid \exists x : \tau. P \land P \vdash Q}} \exists \mathsf{E}$$

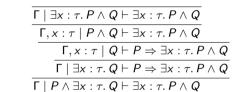
Proof from top to bottom:

$$\frac{\overline{\Gamma, x: \tau \vdash x: \tau} \quad \overline{\Gamma, x: \tau \mid P \vdash P[x/x]}}{\frac{\Gamma, x: \tau \mid P \vdash \exists x: \tau. P \vdash Q}{\Gamma, x: \tau \mid P \vdash Q}} \frac{\Gamma \mid \exists x: \tau. P \vdash Q}{\Gamma, x: \tau \mid \exists x: \tau. P \vdash Q}$$

\land distributes over / preserves $\exists: P \land \exists x : \tau. Q \dashv \vdash \exists x : \tau. P \land Q$

Proof idea: the same as for \land distributes over \lor (think: \lor is binary disjunction, \exists is finite or infinite disjunction (depending on type τ), the distribution over *arbitrary* disjunctions follows from the adjoint rule for \land and \Rightarrow earlier.)

In the proof we use the adjoint rules for \exists described above. Proof left-to-right:



Proof right-to-left:

	$\Gamma \mid \exists x : au. \ Q \vdash \exists x : au. \ Q$	
$\overline{\Gamma, x: \tau \mid P \vdash P}$	$\overline{\Gamma,x:\tau\mid Q\vdash\existsx:\tau.Q}$	
$\overline{\Gamma, x: \tau \mid P \land Q \vdash P}$	$\overline{\Gamma, x: \tau \mid P \land Q \vdash \exists x: \tau. Q}$	
$\Gamma, x: au \mid P \land Q \vdash P \land \exists x: au. Q$		
$\boxed{ \ \ \Gamma \mid \exists x:\tau. \ P \vdash P \land \exists x:\tau. \ Q }$		

 $\vdash \forall P, Q : \mathsf{Prop.} (P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$

$$\frac{ \overbrace{Q \land \neg Q \vdash \mathsf{False}}^{\mathsf{False} \vdash \mathsf{False}} }{ \underbrace{P \Rightarrow Q \land \neg Q \land P \vdash \mathsf{False}}_{\mathsf{P} \Rightarrow Q \land \neg Q \vdash \neg P} } \\ \frac{ \underbrace{P \Rightarrow Q \land \neg Q \vdash \neg P}_{\mathsf{P} \Rightarrow Q \vdash \neg Q \Rightarrow \neg P} }{ \underbrace{\mathsf{True} \vdash (P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)}_{\vdash \forall P, Q : \mathsf{Prop.} (P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)} }$$

With the context of variables explicit:

$$\frac{ \overbrace{P, Q: \operatorname{Prop} \mid \operatorname{False} \vdash \operatorname{False}}{P, Q: \operatorname{Prop} \mid Q \land \neg Q \vdash \operatorname{False}} }{ \overbrace{P, Q: \operatorname{Prop} \mid P \Rightarrow Q \land \neg Q \land P \vdash \operatorname{False}}{P, Q: \operatorname{Prop} \mid P \Rightarrow Q \land \neg Q \vdash \neg P} }$$

$$\frac{ \overbrace{P, Q: \operatorname{Prop} \mid P \Rightarrow Q \land \neg Q \vdash \neg P}{P, Q: \operatorname{Prop} \mid P \Rightarrow Q \vdash \neg Q \Rightarrow \neg P} }{ \overbrace{P, Q: \operatorname{Prop} \mid \operatorname{True} \vdash (P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)}$$

$$\vdash \forall P, Q: \operatorname{Prop}. (P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P) }$$

P: Prop | $P \vdash \neg \neg P$

	Fal	se	\vdash	False
Ρ	$\wedge -$	P	\vdash	False
		Ρ	\vdash	$\neg \neg P$

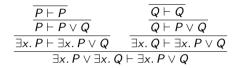
In English: Suppose P holds. To show ¬¬P, so assume ¬P and show False. But now we have assume both P and ¬P and hence we get False, as desired. Done.

 \exists commutes with \lor : $\exists x : \tau$. $P \lor Q \dashv \exists x : \tau$. $P \lor \exists x : \tau$. Q

Proof of left-to-right:

$\overline{x:\tau \mid P \vdash P} \qquad \overline{x:\tau \vdash x:\tau}$	$\overline{x:\tau \mid Q \vdash Q} \qquad \overline{x:\tau \vdash x:\tau}$	
$x:\tau \mid P \vdash \exists x:\tau. P$	$x:\tau\mid Q\vdash \exists x:\tau.\ Q$	
$\overline{x: \tau \mid P \vdash \exists x: \tau. P \lor \exists x: \tau. Q}$	$\overline{x: au \mid Q \vdash \exists x: au. P \lor \exists x: au. Q}$	
$x:\tau \mid P \lor Q \vdash \exists x:\tau. \ P \lor \exists x:\tau. \ Q$		
$\exists x:\tau. P \lor Q \vdash \exists x:\tau. P \lor \exists x:\tau. Q$		

Proof of right-to-left:



Here we have used monotonicity of $\exists x$:

$$\frac{\Gamma, x : \tau \mid P \vdash Q}{\Gamma \mid \exists x : \tau. P \vdash \exists x : \tau. Q}$$

which holds because:

$$\frac{\Gamma, x : \tau \mid P \vdash Q \qquad \Gamma, x : \tau \vdash x : \tau}{\Gamma, x : \tau \mid P \vdash \exists x : \tau. Q \\ \overline{\Gamma \mid \exists x : \tau. P \vdash \exists x : \tau. Q}}$$

Intuition for Iris Propositions

- Intuition: A proposition P describes a set of resources.
- Write \mathcal{R} for the set of resources, and write r_1 , r_2 , etc., for elements in \mathcal{R} .
- We assume that
 - there is an empty resource
 - there is a way to compose (or combine) resources r_1 and r_2 , denoted $r_1 \cdot r_2$
 - the composition is defined for resources that are suitably disjoint, denoted $r_1 \# r_2$.
- Later on we will formalize such notions of resources using certain commutative monoids. For now, it suffices to think about the example of $\mathcal{R} = Heap$.

Intuition for Iris Propositions

- Canonical example: $\mathcal{R} = Heap$, the set of heaps from $\lambda_{ref,conc}$.
- Recall: $Heap = Loc \stackrel{\text{fin}}{\longrightarrow} Val$, the set of partial functions from locations to values
- The empty resource is the empty heap, denoted [].
- Two heaps h₁ and h₂ are disjoint, denoted h₁#h₂, if their domains do not overlap (*i.e.*, dom(h₁) ∩ dom(h₂) = Ø).
- ▶ The composition of two disjoint heaps h_1 and h_2 is the heap $h = h_1 \cdot h_2$ defined by

$$h(x) = \begin{cases} h_1(x) & \text{if } x \in \operatorname{dom}(h_1) \\ h_2(x) & \text{if } x \in \operatorname{dom}(h_2) \end{cases}$$

Intuition for Iris Propositions

- We said: "A proposition P describes a set of resources."
- Also say: "P is a set of resources."
- Also say: "P denotes a set of resources."
- ▶ $P \in P(\mathcal{R})$.
- When r is a resource described by P, we also say that r satisfies P, or that r is in P.
- The intuition for $P \vdash Q$ is then that all resources in P are also in Q (*i.e.*, $\forall r \in \mathcal{R}. r \in P \Rightarrow r \in Q$).

Describing Resources in the Logic

- Primitive: the points-to predicate $x \hookrightarrow v$.
- It is a formula, *i.e.*, a term of type Prop

$$\frac{\Gamma \vdash \ell : Val}{\Gamma \vdash \ell \hookrightarrow v : Val}$$

 \blacktriangleright It describes the set of heap fragments that map location x to value v

$$x \hookrightarrow v = \{h \mid x \in \operatorname{dom}(h) \land h(x) = v\}$$

Ownership reading: if I assert ℓ → ν, then I express that I have the ownership of ℓ and hence I may modify what ℓ pointsto, without invalidating invariants of other parts of the program.

Intuition for * and -*

$$\blacktriangleright P * Q = \{r \mid \exists r_1, r_2.r = r_1 \cdot r_2 \land r_1 \in P \land r_2 \in Q\}$$

- For example, x → u * y → v describes the set of heaps with two *disjoint* locations x and y, the first stores u and the second v.
- ▶ Note: $x \hookrightarrow v * x \hookrightarrow u \vdash$ False.

$$\blacktriangleright P \twoheadrightarrow Q = \{r \mid \forall r_1.r_1 \# r \land r_1 \in P \Rightarrow r \cdot r_1 \in Q\}$$

For example, the proposition

$$x \hookrightarrow u \twoheadrightarrow (x \hookrightarrow u \ast y \hookrightarrow v)$$

describes those heap fragments that map y to v, because when we combine it with a heap fragment mapping x to u, then we get a heap fragment mapping x to u and y to v.

Weakening Rule

Weakening rule:

*-WEAK

$$P_1 * P_2 \vdash P_1$$

Thus Iris is an affine separation logic.

Example:

$$x \hookrightarrow u * y \hookrightarrow v \vdash x \hookrightarrow u$$

Suppose
$$h \in (x \hookrightarrow u * y \hookrightarrow v)$$
.

- Then h(x) = u and h(y) = v.
- Therefore $h \in (x \hookrightarrow u)$.
- Generally, if $h \in P$ and $h' \ge h$, then also $h' \in P$.

Weakening Rule

In a bit more detail:

- Intuitively, the fact that this rule is sound means that propositions are interpreted by upwards closed sets of resources:
 - We say that $r_1 \ge r_2$ iff $r_1 = r_2 \cdot r_3$, for some r_3 .
 - Suppose $r_1 \in P_1$ and that $r \ge r_1$. Then there is r_2 such that $r = r_1 \cdot r_2$.
 - Let P_2 be $\{r_2\}$.
 - $\blacktriangleright \quad \text{Then } r_1 \cdot r_2 \in P_1 * P_2.$
 - By the weakening rule, we then also have that $r = r_1 \cdot r_2 \in P_1$.
 - Hence P_1 is upwards closed.
- The above is not a formal proof, hence the stress on "intuitively".

Associativity and Commutativity of *

Basic structural rules:

 $\frac{*-\text{ASSOC}}{P_1 * (P_2 * P_3) \dashv \vdash (P_1 * P_2) * P_3} \qquad \qquad \frac{*-\text{COMM}}{P_1 * P_2 \dashv \vdash P_2 * P_1}$

Sound because composition of resources, \cdot , is commutative and associative.

Separating Conjunction Introduction

$$\frac{\stackrel{*\mathrm{I}}{P_1 \vdash Q_1} \quad P_2 \vdash Q_2}{P_1 * P_2 \vdash Q_1 * Q_2}$$

- To show a separating conjuction Q₁ * Q₂, we need to split the assumption and decide which resources to use to prove Q₁ and which ones to use to prove Q₂.
- Example: $P \vdash P * P$ is not provable in general

Magic wand introduction and elimination

$$\frac{\stackrel{-*\mathrm{I}}{R}}{\underset{R \vdash P \twoheadrightarrow Q}{R \vdash P \twoheadrightarrow Q}} \qquad \qquad \frac{\stackrel{-*\mathrm{E}}{R_1 \vdash P \twoheadrightarrow Q}}{\underset{R_1 \ltimes R_2 \vdash Q}{R_1 \ast R_2 \vdash Q}}$$

- Introduction rule intuitively sound because
 - Suppose $r \in R$. TS $r \in P \twoheadrightarrow Q$.
 - ▶ Thus let $r_1 \in P$ and suppose $r_1 \# r$. TS $r \cdot r_1 \in Q$.
 - We have $r \cdot r_1 \in R * P$.
 - Hence, by antecedent, $r \cdot r_1 \in Q$, as required.
- Elimination rule intuitively sound because

