
1

Iris: Higher-Order Concurrent Separation Logic

Lecture 7: Later Modality

Lars Birkedal

Aarhus University, Denmark

November 14, 2017

2

Overview

Earlier:
I Operational Semantics of λref,conc

I e, (h, e) (h, e′), and (h, E)→ (h′, E ′)
I Basic Logic of Resources

I l ↪→ v , P ∗ Q, P −∗ Q, Γ | P ` Q

I Basic Separation Logic
I {P} e {v .Q} : Prop, isList l xs, ADTs, foldr

Today:

I Later Modality: .

I Necessary for working with invariants (defined later in the course)
I Key Points:

I Löb rule: (.P ⇒ P)⇒ P
I Guarded recursively defined predicates: µr .P

3

Later Modality
I Recall the recursion rule:

Ht-Rec
Γ, f : Val | S ∧ ∀y . ∀v . {P} f v {u.Q} ` ∀y . ∀v . {P} e[v/x] {u.Q}

Γ | S ` ∀y . ∀v . {P} (rec f (x) = e)v {u.Q}

I This rule involves a kind of recursive reasoning.
I We mentioned earlier that this rule is sound because function application involves

reduction steps, i.e., we will only use the recursive assumption after some
reduction steps have taken place.

I Later in the course, when discussing invariants, we will want to have other forms
of recursive reasoning, where the recursive reasoning steps are not directly tied to
corresponding reduction steps.

I But soundness will still hinge on some reduction steps taking place.
I Thus to ensure soundness, we will need some way to express, in the logic, that a

property is only supposed to hold later, after a reduction step has taken place.
I This is what the later modality . achieves: intuitively, .P holds if P holds after a

reduction step has been taken.

4

Plan for today

Today

I Rules for reasoning about ., including strengthening of earlier Hoare rules.
I Example

I Specification and proof of a fixed point combinator.
I Proof relies on ..
I The example is perhaps somewhat contrived — chosen to illustrate expressiveness

without being too long.

Later on

I the rules we describe today will be important later on, especially when reasoning
about invariants.

5

Löb Rule

I Typing for .:
Γ ` P : Prop

Γ ` .P : Prop

I Löb Rule:

Löb
S ∧ .P ` P

S ` P

I Akin to a coinduction proof rule: to show P, it suffices to show P under the
assumption that P holds later.

6

Aside: semantics of propositions

I As suggested by the above, the meaning of Iris proposition is not just a set of
resources.

I In more detail, an Iris proposition P is1 a set of pairs (k , r), with k a natural
number and r a resource.

I Think of k as a step-index, a natural number which expresses for how many
reduction steps we know that r is in P.

I If (k , r) ∈ P and m ≤ k, then also (m, r) ∈ P.

I The step-indeces are used to interpret .:

.P = {(m + 1, r) | (m, r) ∈ P} ∪ {(0, r) | r ∈ R}

I “later” means that the index number is smaller (there are fewer reduction steps
left, after we have taken some reduction steps).

I The Löb Rule is proved sound by induction on these step-indeces.

1Not really, but closer to being. . .

7

Laws for Later Modality

Later-Mono
Q ` P

.Q ` .P

Later-weak
Q ` P

Q ` .P

Löb
Q ∧ .P ` P

Q ` P

8

Laws for Later Modality

Later-conj
R ` .(P ∧ Q)

R ` .P ∧ .Q

Later-disj
R ` .(P ∨ Q)

R ` .P ∨ .Q

Later-all
Q ` . ∀x .P
Q ` ∀x . .P

Later-sep
R ` .P ∗ .Q
R ` .(P ∗ Q)

.-∃
τ is inhabited Q ` .∃x : τ.P

Q ` ∃x : τ. .P

.-∃
Q ` ∃x . .P
Q ` . ∃x .P

9

Stronger rules for Hoare triples

Ht-beta
S ` {P} e [v/x] {u.Q}
S ` {.P} (λx .e)v {u.Q}

Ht-Rec
Q ` {P} e [(rec f (x) = e)/f , v/x] {Φ}

Q ` {.P} (rec f (x) = e)v {Φ}

Ht-load

S ` {. ` ↪→ u} ! ` {v .v = u ∧ ` ↪→ u}

Ht-store

S ` {. ∃u. ` ↪→ u} `← w {v .v = () ∧ ` ↪→ w}

Ht-Match
S ` {P} ei [u/xi] {v .Q}

S ` {.P}match inji u with inj1 x1 ⇒ e1 | inj2 x2 ⇒ e2 end {v .Q}

10

Remark on soundness �

Why are the rules Ht-load and Ht-store sound ?

I Difficult to explain intuitively.

I Relies on ↪→ being a timeless predicate together with the definition of Hoare triples
(the fact that weakest precondition is “closed wrt. the fancy update modality”).

11

Stronger derived Hoare triples

Ht-let
S ` {P} e1 {x . .Q} S ` ∀v . {Q[v/x]} e2 [v/x] {u.R}

S ` {P} let x = e1 in e2 {u.R}

Ht-let-det
S ` {P} e1 {x . .(x = v) ∧ .Q} S ` {Q[v/x]} e2 [v/x] {u.R}

S ` {P} let x = e1 in e2 {u.R}

Ht-seq

S ` {P} e1 { . .Q} S ` {R} e2 {u.R}
S ` {P} e1; e2 {u.R} .

Ht-If
S ` {P ∗ v = true} e2 {u.Q} S ` {P ∗ v = false} e3 {u.Q}

S ` {.P} if v then e2 else e3 {u.Q}

12

Guarded recursively defined predicates �

I We extend terms of the logic with

t ::= · · · | µx : τ. t

with the side-condition that the recursive occurrences must be guarded: in µx . t,
the variable x can only appear under the later . modality.

I Fixed-point property expressed by the following rule:

Mu-fixed

Q ` µx : τ. t =τ t [µx : τ. t/x]

13

Guarded recursively defined predicates �

I Example: using a stream (infinite list) as model of linked list:

µ isStream : Val→ stream Val→ Prop. λl : Val. λxs : stream Val.

(xs = [] ∧ l = inj1())∨
(∃x , xs ′. xs = x : xs ′ ∧ ∃hd , l ′. l = inj2(hd) ∗ hd ↪→ (x , l ′) ∗ .(isStream l ′xs))

I Note that xs is a stream (infinite list). Therefore we cannot define the predicate
by induction on xs.

I Above, the recursion variable occurs positively.

I In Iris, Hoare triples are defined in terms of weakest-preconditions, which are
defined by means of a guarded recursive definition for a positive definition to give
a partial correctness interpretation.

I One can also define mixed-variance recursive predicates.

14

Guarded recursively defined predicates �

I Mixed-variance guarded recursive predicates are useful for
I Interpreting recursive types in a typed programming language by Iris predicates /

relations (see ipm-paper).
I Defining models of untyped / unityped languages (e.g., for object capabilities).
I Specifying and reasoning about libraries that can call themself recursively, e.g., an

event loop library (see iCap-paper).
I M.Sc. Project idea: Formalize event loop library in Iris in Coq, if ambitious, consider

library for asynchronous IO.

http://iris-project.org/pdfs/2017-popl-proofmode-final.pdf
http://users-cs.au.dk/birke/papers/icap-conf.pdf

15

Example: Fixed-point combinator ΘF

I Given a value F , the call-by-value Turing fixed-point combinator ΘF is:

ΩF = λr .F (λx .rrx)

ΘF = ΩFΩF

I For any values F and v ,

ΘF v F (λx .ΘF x)v

I Thus, if F = λfx .e then one should think of ΘF as rec f (x) = e.

16

Proof Rule for ΘF

I Now we wish to derive proof rule for ΘF , similar to the recursion rule.

Ht-Turing-fp
Γ | S ∧ ∀v . {P}ΘF v {u.Q} ` ∀v . {P}F (λx .ΘF x)v {u.Q}

Γ | S ` ∀v . {P}ΘF v {u.Q}

I We will use the Löb rule.

I We will also use that if P is persistent, then .P is persistent, which means that it
can be moved in and out of preconditions.

17

Proof

I We proceed by the Löb rule and hence we assume

. ∀v . {P}ΘF v {u.Q} (∗)

I and we are to show

∀v . {P}ΘF v {u.Q}.

I Let v be a value.

I By Later-weak and the rule of consequence SFTS

{.P}ΘF v {u.Q}.

18

Proof

I Since Hoare triples are persistent, we can move our assumption (∗) into the
precondition, and thus SFTS:

{.(∀v . {P}ΘF v {u.Q} ∧ P)}ΘF v {u.Q}

I By the bind rule and the stronger rule Ht-beta introduced above SFTS

{∀v . {P}ΘF v {u.Q} ∧ P}F (λx .ΘF x)v {u.Q}

I We again use persistence and move the triple ∀v . {P}ΘF v {u.Q} into the context
and then SFTS

{P}F (λx .ΘF x)v {u.Q}

I But this is exactly the premise of the rule Ht-Turing-fp, and thus the proof is
concluded.

