Iris: Higher-Order Concurrent Separation Logic

Lecture 7: Later Modality

Lars Birkedal

Aarhus University, Denmark

November 14, 2017

Overview

Earlier:
» Operational Semantics of Aref conc
> e, (h,e)~ (h¢e), and (h,E) — (H,E)
» Basic Logic of Resources
» =5 v, PxQ, PxQT|PFQ
» Basic Separation Logic
» {P}e{v.Q} : Prop, isList | xs, ADTs, foldr
Today:
» Later Modality: >

» Necessary for working with invariants (defined later in the course)
> Key Points:

» Lob rule: (P = P)=P
» Guarded recursively defined predicates: ur. P

Later Modality

» Recall the recursion rule:

HT-REC
I,f:Val| SAVy Vv.{P}fv{u.Q} - Vy.Vv.{P}e[v/x]{u.Q}

I SkEVy.Vv.{P}(recf(x) = e)v{u.Q}

» This rule involves a kind of recursive reasoning.

» We mentioned earlier that this rule is sound because function application involves
reduction steps, i.e., we will only use the recursive assumption after some
reduction steps have taken place.

» Later in the course, when discussing invariants, we will want to have other forms
of recursive reasoning, where the recursive reasoning steps are not directly tied to
corresponding reduction steps.

» But soundness will still hinge on some reduction steps taking place.

» Thus to ensure soundness, we will need some way to express, in the logic, that a
property is only supposed to hold /ater, after a reduction step has taken place.

» This is what the later modality > achieves: intuitively, > P holds if P holds after a
reduction step has been taken.

Plan for today

Today

> Rules for reasoning about >, including strengthening of earlier Hoare rules.
» Example

» Specification and proof of a fixed point combinator.

> Proof relies on .

» The example is perhaps somewhat contrived — chosen to illustrate expressiveness
without being too long.

Later on

> the rules we describe today will be important later on, especially when reasoning
about invariants.

Lob Rule

» Typing for p:
= P: Prop

N P : Prop
» Lob Rule:

LOB
SAGPEP

SEP

» Akin to a coinduction proof rule: to show P, it suffices to show P under the
assumption that P holds later.

Aside: semantics of propositions

> As suggested by the above, the meaning of Iris proposition is not just a set of
resources.

» In more detail, an Iris proposition P is' a set of pairs (k, r), with k a natural
number and r a resource.

» Think of k as a step-index, a natural number which expresses for how many
reduction steps we know that r is in P.

» If (k,r) € P and m < k, then also (m, r) € P.
» The step-indeces are used to interpret >:

>P={(m+1,r) | (mr)e PtU{(0,r) | reR}

> “later” means that the index number is smaller (there are fewer reduction steps
left, after we have taken some reduction steps).

» The Lob Rule is proved sound by induction on these step-indeces.

!Not really, but closer to being. ..

Laws for Later Modality

LATER-MONO LATER-WEAK .

QFP QFP Los
—_— QA>PEP
>QF>P QF>P —_—

QF P

Laws for Later Modality

LATER-CONJ LATER-DISJ LATER-ALL LATER-SEP
R|—I>(P/\Q) R|—I>(P\/Q) QF>Vx.P RFpPx*x>Q
RE>PA>QR REF>PV>Q QFVx.>P RE>(Px* Q)
>-d >-3
T is inhabited QF>ax:7T.P QF3IxX. P

RQr3Ix:7.>P QFp>3dx. P

Stronger rules for Hoare triples

HT-BETA Hr-REC
SHA{P}elv/x] {u.Q} QF {P}el(recf(x) =¢€)/f,v/x] {®}
SH{>P}(Ax.e)v{u.Q} QF {> P} (recf(x) = e)v{d}
HT-LOAD

SF{Pl—=ut U{vv=unl— u}

HT-STORE

SFPIul—=suil+—wi{vv=()ALl w}

Hr-MATCH
SE{P}ei[u/xi] {v.Q}
S F {> P} matchinj; uwithinj; x; = e; | inj, x0 = epend {v.Q}

Remark on soundness g%

Why are the rules HT-LOAD and HT-STORE sound 7
» Difficult to explain intuitively.

> Relies on < being a timeless predicate together with the definition of Hoare triples
(the fact that weakest precondition is “closed wrt. the fancy update modality”).

Stronger derived Hoare triples

Hr-LET
SE{P}e {x.0Q} SEVYv.{Q[v/x]} e [v/x] {u.R}
SFH{P}letx=erine {u.R}

HT-LET-DET

SHE{P}ea {x.p(x=v)A>Q} SH{Q[v/x]}ex[v/x] {u.R}

SF{P}letx =erine {u.R}

HT-SEQ
SH{Pler{_>Q} SH{R}le{u.R}

SE{P}e; e {u.R}

Hr-Ir
SEA{Pxv =true} e {u.Q} SH{Pxv =false} e3 {u.Q}

S+ {>P}ifvtheneyelse e3 {u.Q}

Guarded recursively defined predicates @

> We extend terms of the logic with
tu=--|ux:T.t

with the side-condition that the recursive occurrences must be guarded: in ux.t,
the variable x can only appear under the later > modality.

» Fixed-point property expressed by the following rule:

MU-FIXED

QF pux: 1.t =7 tfux: 7.t/X]

Guarded recursively defined predicates g%

» Example: using a stream (infinite list) as model of linked list:

wisStream : Val — stream Val — Prop. A/ : Val. Axs : stream Val.

(xs=[AT=inj;())V
X, XS'.Xs = X 1 XS A I 1 =injy x hd < (x, I') x >(isStream ['xs
= ! "A3hd,I'.| = injy(hd) * hd I isS I

» Note that xs is a stream (infinite list). Therefore we cannot define the predicate
by induction on xs.

» Above, the recursion variable occurs positively.

> In Iris, Hoare triples are defined in terms of weakest-preconditions, which are
defined by means of a guarded recursive definition for a positive definition to give
a partial correctness interpretation.

» One can also define mixed-variance recursive predicates.

Guarded recursively defined predicates @

» Mixed-variance guarded recursive predicates are useful for
» Interpreting recursive types in a typed programming language by Iris predicates /
relations (see ipm-paper).
» Defining models of untyped / unityped languages (e.g., for object capabilities).
» Specifying and reasoning about libraries that can call themself recursively, e.g., an

event loop library (see iCap-paper).
» M.Sc. Project idea: Formalize event loop library in Iris in Coq, if ambitious, consider
library for asynchronous 10O.

http://iris-project.org/pdfs/2017-popl-proofmode-final.pdf
http://users-cs.au.dk/birke/papers/icap-conf.pdf

Example: Fixed-point combinator ©f

» Given a value F, the call-by-value Turing fixed-point combinator OF is:

QF = Ar.F(Ax.rrx)
OF = QrQF

» For any values F and v,
OFv ~» F(Ax.OFx)v

» Thus, if F = Afx.e then one should think of ©f as recf(x) = e.

Proof Rule for ©¢

» Now we wish to derive proof rule for ©f, similar to the recursion rule.

HT-TURING-FP
M SAVY.{P}Oprv{u.Q} FYv.{P} F(Ax.Opx)v{u.Q}

M SEY.{P}Orv{u.Q}

> We will use the Lob rule.
» We will also use that if P is persistent, then > P is persistent, which means that it
can be moved in and out of preconditions.

Proof

v

We proceed by the Lob rule and hence we assume
>Vv.{P} Ofv {u.Q} (*)

» and we are to show

Vv.{P}Orv{u.Q}.

Let v be a value.

v

v

By LATER-WEAK and the rule of consequence SFTS

{>P}OFv{u.Q}.

Proof

Since Hoare triples are persistent, we can move our assumption (x) into the
precondition, and thus SFTS:

{p(Vv.{P}OFv{u.Q} A P)} Orv{u.Q}
By the bind rule and the stronger rule HT-BETA introduced above SFTS
{Vv.AP}OFv{u.Q} N P} F(Ax.Opx)v {u.Q}

We again use persistence and move the triple Vv.{P} ©v {u.Q} into the context
and then SFTS

{P} F(Ax.©px)v{u.Q}

But this is exactly the premise of the rule HT-TURING-FP, and thus the proof is
concluded.

